I. Cave, Theory of x-ray measurement of microfibril angle in wood, 1997.

I. Cave, Theory of X-ray measurement of microfibril angle in wood, Wood Science and Technology, vol.49, issue.4, pp.225-234, 1997.
DOI : 10.1007/BF00702610

S. Chang, C. B. Ruelle, J. Beauchêne, J. , D. Renzo et al., Mesoporosity as a new parameter for understanding tension stress generation in trees, Journal of Experimental Botany, vol.60, issue.11, pp.3023-3030, 2009.
DOI : 10.1093/jxb/erp133

URL : https://hal.archives-ouvertes.fr/hal-00387861

B. Clair, T. Almé-ras, H. Yamamoto, T. Okuyama, and J. Sugiyama, Mechanical Behavior of Cellulose Microfibrils in Tension Wood, in Relation with Maturation Stress Generation, Biophysical Journal, vol.91, issue.3, pp.1128-1135, 2006.
DOI : 10.1529/biophysj.105.078485

URL : https://hal.archives-ouvertes.fr/hal-00112572

B. Clair, J. Gril, K. Baba, T. B. Sugiyama, and J. , Precautions for the Structural Analysis of the Gelatinous Layer in Tension Wood, IAWA Journal, vol.26, issue.2, pp.189-195, 2005.
DOI : 10.1163/22941932-90000110

URL : https://hal.archives-ouvertes.fr/hal-00004517

B. Clair, J. Gril, D. Renzo, F. Yamamoto, H. Quignard et al., Characterization of a Gel in the Cell Wall To Elucidate the Paradoxical Shrinkage of Tension Wood, Biomacromolecules, vol.9, issue.2, pp.494-498, 2008.
DOI : 10.1021/bm700987q

B. Clair, J. Ruelle, and T. B. , Relationship between growth stress, mechano-physical properties and proportion of fibre with gelatinous layer in chestnut (Castanea sativa Mill.), Holzforschung, vol.57, pp.189-195, 2003.

B. Clair and T. B. , SHRINKAGE OF THE GELATINOUS LAYER OF POPLAR AND BEECH TENSION WOOD, IAWA Journal, vol.22, issue.2, pp.121-131, 2001.
DOI : 10.1163/22941932-90000273

URL : https://hal.archives-ouvertes.fr/hal-00004542

T. Davidson, R. Newman, and M. Ryan, Variations in the fibre repeat between samples of cellulose I from different sources, Carbohydrate Research, vol.339, issue.18, pp.2889-2893, 2004.
DOI : 10.1016/j.carres.2004.10.005

L. Donaldson and P. Xu, Microfibril orientation across the secondary cell wall of Radiata pine tracheids, Trees, vol.80, issue.4, pp.644-653, 2005.
DOI : 10.1007/BF00705923

C. Fang, C. B. Gril, and J. , Transverse shrinkage in G-fibers as a function of cell wall layering and growth strain, Wood Science and Technology, vol.56, issue.8, pp.659-671
DOI : 10.1016/B978-1-4832-2931-7.50027-6

URL : https://hal.archives-ouvertes.fr/hal-00194930

C. Fang, C. B. Gril, J. Liu, and S. , Growth Stresses are Highly Controlled by the Amount of G-Layer in Poplar Tension Wood, IAWA Journal, vol.29, issue.3, pp.237-246, 2008.
DOI : 10.1163/22941932-90000183

URL : https://hal.archives-ouvertes.fr/hal-00339066

J. Fisher, Anatomy of axis contraction in seedlings from a fire prone habitat, American Journal of Botany, vol.95, issue.11, pp.1337-1348, 2008.
DOI : 10.3732/ajb.0800083

M. Fournier, B. Chanson, T. B. Guitard, and D. , M??canique de l'arbre sur pied : mod??lisation d'une structure en croissance soumise ?? des chargements permanents et ??volutifs. 2. Analyse tridimensionnelle des contraintes de maturation, cas du feuillu standard, Annales des Sciences Foresti??res, vol.48, issue.5, pp.527-546, 1991.
DOI : 10.1051/forest:19910504

M. Fujita, H. Saiki, and H. Harada, Electron microscopy of microtubules and cellulose microfibrils in secondary wall formation of poplar tension wood fibers, Mokuzai Gakkaishi, vol.20, pp.147-156, 1974.

T. Gorshkova, O. Gurjanov, P. Mikshina, N. Ibragimova, N. Mokshina et al., Specific type of secondary cell wall formed by plant fibers, Russian Journal of Plant Physiology, vol.57, issue.3, pp.328-341, 2010.
DOI : 10.1134/S1021443710030040

L. Goswami, J. Dunlop, K. Jungnikl, M. Eder, N. Gierlinger et al., Stress generation in the tension wood of poplar is based on the lateral swelling power of the G-layer, The Plant Journal, vol.50, issue.4, pp.531-538, 2008.
DOI : 10.3139/146.017991

URL : https://hal.archives-ouvertes.fr/hal-00964568

R. Hori, J. Sugiyama, T. Itoh, and M. Mü-ller, Synchrotron x-ray diffraction analysis of cellulose in developing xylem cell walls from Cryptomeria japonica, Wood Res, vol.87, pp.19-20, 2000.

A. Ishikawa, T. Okano, and J. Sugiyama, Fine structure and tensile properties of ramie fibres in the crystalline form of cellulose I, II, IIII and IVI, Polymer, vol.38, issue.2, pp.463-468, 1997.
DOI : 10.1016/S0032-3861(96)00516-2

B. Jourez, A. Riboux, and A. Leclercq, ANATOMICAL CHARACTERISTICS OF TENSION WOOD AND OPPOSITE WOOD IN YOUNG INCLINED STEMS OF POPLAR (POPULUS EURAMERICANA CV 'GHOY'), IAWA Journal, vol.22, issue.2, pp.133-157, 2001.
DOI : 10.1163/22941932-90000274

E. Mellerowicz, P. Immerzeel, and T. Hayashi, Xyloglucan: The Molecular Muscle of Trees, Annals of Botany, vol.102, issue.5, pp.659-665, 2008.
DOI : 10.1093/aob/mcn170

E. Mellerowicz and B. Sundberg, Wood cell walls: biosynthesis, developmental dynamics and their implications for wood properties, Current Opinion in Plant Biology, vol.11, issue.3, pp.293-300, 2008.
DOI : 10.1016/j.pbi.2008.03.003

B. Moulia, C. Coutand, and C. Lenne, Posture control and skeletal mechanical acclimation in terrestrial plants: implications for mechanical modeling of plant architecture, American Journal of Botany, vol.93, issue.10, pp.1477-1489, 2006.
DOI : 10.3732/ajb.93.10.1477

URL : https://hal.archives-ouvertes.fr/hal-01189136

M. Mü-ller, M. Burghammer, and J. Sugiyama, Direct investigation of the structural properties of tension wood cellulose microfibrils using microbeam x-ray fibre diffraction, Holzforschung, vol.60, pp.474-479, 2006.

M. Mü-ller, R. Hori, T. Itoh, and J. Sugiyama, X-ray Microbeam and Electron Diffraction Experiments on Developing Xylem Cell Walls, Biomacromolecules, vol.3, issue.1, pp.182-186, 2002.
DOI : 10.1021/bm015605h

E. Mü-nch, Statik und Dynamik des Schraubigen Baus der Zwellwand, besonders der Druck-and Zugholzes, Flora, vol.32, pp.357-424, 1938.

T. Nakai, H. Yamamoto, and T. Nakao, The relationship between macroscopic strain and crystal lattice strain in wood under uniaxial stress in the fiber direction, Journal of Wood Science, vol.51, issue.2, pp.193-194, 2005.
DOI : 10.1007/s10086-005-0697-8

N. Nishikubo, T. Awano, A. Banasiak, V. Bourquin, F. Ibatullin et al., Xyloglucan Endo-transglycosylase (XET) Functions in Gelatinous Layers of Tension Wood Fibers in Poplar???A Glimpse into the Mechanism of the Balancing Act of Trees, Plant and Cell Physiology, vol.48, issue.6, pp.843-855, 2007.
DOI : 10.1093/pcp/pcm055

T. Okuyama, H. Yamamoto, M. Yoshida, Y. Hattori, and R. Archer, Growth stresses in tension wood: role of microfibrils and lignification, Annales des Sciences Foresti??res, vol.51, issue.3, pp.291-300, 1994.
DOI : 10.1051/forest:19940308

URL : https://hal.archives-ouvertes.fr/hal-00882950

T. Okuyama, M. Yoshida, and H. Yamamoto, An estimation of the turgor pressure change as one of the factors of growth stress generation in cell walls: diurnal change of tangential strain of inner bark, Mokuzai Gakkaishi, vol.41, pp.1070-1078, 1995.

M. Peura, K. Kö-lln, I. Grotkopp, P. Saranpää, M. Mü-ller et al., The effect of axial strain on crystalline cellulose in Norway spruce, Wood Science and Technology, vol.124, issue.7, pp.565-583, 2007.
DOI : 10.1007/s00468-003-0313-8

M. Peura, M. Mü-ller, R. Serimaa, U. Vainio, M. Saren et al., Structural studies of single wood cell walls by synchrotron X-ray microdiffraction and polarised light microscopy, Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, vol.238, issue.1-4, pp.16-20, 2005.
DOI : 10.1016/j.nimb.2005.06.011

M. Peura, M. Mü-ller, U. Vainio, M. Saren, S. et al., X-ray microdiffraction reveals the orientation of cellulose microfibrils and the size of cellulose crystallites in single Norway spruce tracheids, Trees, vol.21, issue.1, pp.49-61, 2008.
DOI : 10.1093/treephys/21.12-13.869

M. Peura, M. Saren, J. Laukkanen, K. Nygard, S. Andersson et al., The elemental composition, the microfibril angle distribution and the shape of the cell cross-section in Norway spruce xylem, Trees, vol.4, issue.110, pp.499-510, 2008.
DOI : 10.1093/treephys/17.4.221

G. Pilate, B. Chabbert, B. Cathala, A. Yoshinaga, J. Leplé et al., Lignification and tension wood, Comptes Rendus Biologies, vol.327, issue.9-10, pp.889-901, 2004.
DOI : 10.1016/j.crvi.2004.07.006

URL : https://hal.archives-ouvertes.fr/hal-00306768

C. Riekel, New avenues in x-ray microbeam experiments, Reports on Progress in Physics, vol.63, issue.3, pp.233-262, 2000.
DOI : 10.1088/0034-4885/63/3/201

J. Ruelle, H. Yamamoto, and T. B. , Growth stresses and cellulose structural parameters in tension and normal wood from three tropical rainforest angiosperm species, BioResources, vol.2, pp.235-251, 2007.
URL : https://hal.archives-ouvertes.fr/hal-01031799

R. Washusen and R. Evans, THE ASSOCIATION BETWEEN CELLULOSE CRYSTALLITE WIDTH AND TENSION WOOD OCCURRENCE IN EUCALYPTUS GLOBULUS, IAWA Journal, vol.22, issue.3, pp.235-243, 2001.
DOI : 10.1163/22941932-90000281

H. Yamamoto, Generation mechanism of growth stresses in wood cell walls: roles of lignin deposition and cellulose microfibril during cell wall maturation, Wood Science and Technology, vol.41, issue.3, pp.171-182, 1998.
DOI : 10.1007/978-3-642-61616-7_9

H. Yamamoto, Role of the gelatinous layer on the origin of the physical properties of the tension wood, Journal of Wood Science, vol.50, issue.3, pp.197-208, 2004.
DOI : 10.1007/s10086-003-0556-4

URL : https://hal.archives-ouvertes.fr/hal-00004591

H. Yamamoto, K. Abe, Y. Arakawa, T. Okuyama, and J. Gril, Role of the gelatinous layer (G-layer) on the origin of the physical properties of the tension wood of Acer sieboldianum, Journal of Wood Science, vol.51, issue.3, pp.222-233, 2005.
DOI : 10.1007/s10086-004-0639-x

URL : https://hal.archives-ouvertes.fr/hal-00004591

S. Zabler, O. Paris, I. Burgert, and P. Fratzl, Moisture changes in the plant cell wall force cellulose crystallites to deform, Journal of Structural Biology, vol.171, issue.2, pp.133-141, 2010.
DOI : 10.1016/j.jsb.2010.04.013