J. G. Thewissen, L. N. Cooper, M. T. Clementz, S. Bajpai, and B. N. Tiwari, Whales originated from aquatic artiodactyls in the Eocene epoch of India, Nature, vol.450, pp.1190-1194, 2007.

T. A. Demere, M. R. Mcgowen, A. Berta, and J. Gatesy, Morphological and molecular evidence for a stepwise evolutionary transition from teeth to baleen in mysticete whales, Syst Biol, vol.57, pp.15-37, 2008.

M. D. Uhen, Evolution of marine mammals: back to the sea after 300 million years, Anat Rec (Hoboken), vol.290, pp.514-522, 2007.

J. S. Reidenberg, Anatomical adaptations of aquatic mammals, Anat Rec (Hoboken), vol.290, pp.507-513, 2007.

L. N. Cooper, S. D. Dawson, J. S. Reidenberg, and A. Berta, Neuromuscular anatomy and evolution of the cetacean forelimb, Anat Rec (Hoboken), vol.290, pp.1121-1137, 2007.

N. M. Gray, K. Kainec, S. Madar, L. Tomko, and S. Wolfe, Sink or swim? Bone density as a mechanism for buoyancy control in early cetaceans, Anat Rec (Hoboken), vol.290, pp.638-653, 2007.

S. Nummela, J. G. Thewissen, S. Bajpai, T. Hussain, and K. Kumar, Sound transmission in archaic and modern whales: anatomical adaptations for underwater hearing, Anat Rec (Hoboken), vol.290, pp.716-733, 2007.

J. Larson, K. L. Drew, L. P. Folkow, S. L. Milton, and T. J. Park, No oxygen? No problem! Intrinsic brain tolerance to hypoxia in vertebrates, J. Exp. Biol, vol.217, pp.1024-1039, 2014.

M. R. Mcgowen, J. Gatesy, and D. E. Wildman, Molecular evolution tracks macroevolutionary transitions in Cetacea, Trends Ecol Evol, vol.29, pp.336-346, 2014.

S. Mirceta, Evolution of mammalian diving capacity traced by myoglobin net surface charge, Science, vol.340, p.1234192, 2013.

R. Tian, Evolutionary Genetics of Hypoxia Tolerance in Cetaceans during Diving, Genome Biol Evol, vol.8, pp.827-839, 2016.

N. Itoh and D. M. Ornitz, Fibroblast growth factors: from molecular evolution to roles in development, metabolism and disease, J Biochem, vol.149, pp.121-130, 2011.

T. Imamura, Physiological functions and underlying mechanisms of fibroblast growth factor (FGF) family members: recent findings and implications for their pharmacological application, Biol Pharm Bull, vol.37, pp.1081-1089, 2014.

N. Itoh and D. M. Ornitz, Functional evolutionary history of the mouse Fgf gene family, Dev Dyn, vol.237, pp.18-27, 2008.

M. Tekin, Homozygous mutations in fibroblast growth factor 3 are associated with a new form of syndromic deafness characterized by inner ear agenesis, microtia, and microdontia, Am J Hum Genet, vol.80, pp.338-344, 2007.

H. Barak, FGF9 and FGF20 maintain the stemness of nephron progenitors in mice and man, Dev Cell, vol.22, pp.1191-1207, 2012.

M. Harada, FGF9 monomer-dimer equilibrium regulates extracellular matrix affinity and tissue diffusion, Nat Genet, vol.41, pp.289-298, 2009.

Y. Wang, X. L. Wu, D. Q. Wei, Y. X. Li, and J. F. Wang, Autoinhibitory mechanism for the mutation-induced impaired FGF9 signaling, J Chem Inf Model, vol.52, pp.2422-2429, 2012.

N. Bhattacharyya, W. H. Chong, R. I. Gafni, and M. T. Collins, Fibroblast growth factor 23: state of the field and future directions, Trends Endocrinol Metab, vol.23, pp.610-618, 2012.

J. Yang, Hypoxia-induced fibroblast growth factor 11 stimulates capillary-like endothelial tube formation, Oncol Rep, vol.34, pp.2745-2751, 2015.

Z. Chen, Z. Wang, S. Xu, K. Zhou, and G. Yang, Characterization of hairless (Hr) and FGF5 genes provides insights into the molecular basis of hair loss in cetaceans, BMC Evol Biol, vol.13, 2013.

M. Keane, Insights into the evolution of longevity from the bowhead whale genome, Cell Rep, vol.10, pp.112-122, 2015.

H. S. Yim, Minke whale genome and aquatic adaptation in cetaceans, Nat Genet, vol.46, pp.88-92, 2014.

A. D. Foote, Convergent evolution of the genomes of marine mammals, Nat Genet, vol.47, pp.272-275, 2015.

X. Zhou, Baiji genomes reveal low genetic variability and new insights into secondary aquatic adaptations, Nat Commun, vol.4, p.2708, 2013.

Z. Yang, PAML 4: phylogenetic analysis by maximum likelihood, Mol Biol Evol, vol.24, pp.1586-1591, 2007.

Z. Yang, Likelihood ratio tests for detecting positive selection and application to primate lysozyme evolution, Mol Biol Evol, vol.15, pp.568-573, 1998.

Z. Yang and R. Nielsen, Codon-substitution models for detecting molecular adaptation at individual sites along specific lineages, Mol Biol Evol, vol.19, pp.908-917, 2002.

Z. Yang, R. Nielsen, N. Goldman, and A. M. Pedersen, Codon-substitution models for heterogeneous selection pressure at amino acid sites, Genetics, vol.155, pp.431-449, 2000.

B. Murrell, Detecting individual sites subject to episodic diversifying selection, PLoS Genet, vol.8, p.1002764, 2012.

, Scientific RepoRts |, vol.7, p.40233

I. A. Adzhubei, A method and server for predicting damaging missense mutations, Nat Methods, vol.7, pp.248-249, 2010.

P. Kumar, S. Henikoff, and P. C. Ng, Predicting the effects of coding non-synonymous variants on protein function using the SIFT algorithm, Nat Protoc, vol.4, pp.1073-1081, 2009.

Y. Choi, G. E. Sims, S. Murphy, J. R. Miller, and A. P. Chan, Predicting the functional effect of amino acid substitutions and indels, PLoS One, vol.7, p.46688, 2012.

A. N. Plotnikov, Crystal structure of fibroblast growth factor 9 reveals regions implicated in dimerization and autoinhibition, J Biol Chem, vol.276, pp.4322-4329, 2001.

Z. Shi, C. A. Olson, A. J. Bell, and N. R. Kallenbach, Stabilization of alpha-helix structure by polar side-chain interactions: complex salt bridges, cation-pi interactions, and C-H em leader O H-bonds, Biopolymers, vol.60, pp.366-380, 2001.

I. Seim, The transcriptome of the bowhead whale Balaena mysticetus reveals adaptations of the longest-lived mammal, Aging (Albany NY), vol.6, pp.879-899, 2014.

P. M. Smallwood, Fibroblast growth factor (FGF) homologous factors: new members of the FGF family implicated in nervous system development, Proc. Natl. Acad. Sci. USA, vol.93, pp.9850-9857, 1996.

J. Schodel, High-resolution genome-wide mapping of HIF-binding sites by ChIP-seq, Blood, vol.117, pp.207-217, 2011.

S. Oulion, S. Bertrand, and H. Escriva, Evolution of the FGF Gene Family, Int J Evol Biol, p.298147, 2012.

Y. Nakatake, M. Hoshikawa, T. Asaki, Y. Kassai, and N. Itoh, Identification of a novel fibroblast growth factor, FGF-22, preferentially expressed in the inner root sheath of the hair follicle, Biochim Biophys Acta, vol.1517, pp.460-463, 2001.

M. Jarosz, Fibroblast growth factor 22 is not essential for skin development and repair but plays a role in tumorigenesis, PLoS One, vol.7, p.39436, 2012.

C. L. Myhrvold, H. A. Stone, and E. Bou-zeid, What is the use of elephant hair?, PLoS One, vol.7, p.47018, 2012.

P. Krejci, J. Prochazkova, V. Bryja, A. Kozubik, and W. R. Wilcox, Molecular pathology of the fibroblast growth factor family, Hum Mutat, vol.30, pp.1245-1255, 2009.

B. A. Armfield, Z. Zheng, S. Bajpai, C. J. Vinyard, and J. Thewissen, Development and evolution of the unique cetacean dentition, PeerJ, vol.1, p.24, 2013.

E. M. Munoz and R. J. Linhardt, Heparin-binding domains in vascular biology, Arterioscler Thromb Vasc Biol, vol.24, pp.1549-1557, 2004.

C. Charles, Modulation of Fgf3 dosage in mouse and men mirrors evolution of mammalian dentition, Proc. Natl. Acad. Sci. USA, vol.106, pp.22364-22368, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00488217

M. Goldfarb, Fibroblast growth factor homologous factors: evolution, structure, and function, Cytokine Growth Factor Rev, vol.16, pp.215-220, 2005.

H. Li, Aligning sequence reads, clone sequences and assembly contigs with, 2013.

H. Li, The Sequence Alignment/Map format and SAMtools, Bioinformatics, vol.25, pp.2078-2079, 2009.

M. Nei and S. Kumar, Molecular Evolution and Phylogenetics, 2000.

K. Tamura, G. Stecher, D. Peterson, A. Filipski, S. Kumar et al., Molecular Evolutionary Genetics Analysis version 6.0, Mol Biol Evol, vol.30, pp.2725-2729, 2013.

A. Loytynoja and N. Goldman, An algorithm for progressive multiple alignment of sequences with insertions, Proc. Natl. Acad. Sci. USA, vol.102, pp.10557-10562, 2005.

P. H. Fabre, L. Hautier, D. Dimitrov, and E. J. Douzery, A glimpse on the pattern of rodent diversification: a phylogenetic approach, BMC Evol Biol, vol.12, 2012.

M. R. Mcgowen, M. Spaulding, and J. Gatesy, Divergence date estimation and a comprehensive molecular tree of extant cetaceans, Mol Phylogenet Evol, vol.53, pp.891-906, 2009.

P. Perelman, A molecular phylogeny of living primates, PLoS Genet, vol.7, p.1001342, 2011.

J. E. Tarver, The Interrelationships of Placental Mammals and the Limits of Phylogenetic Inference, Genome Biol Evol, vol.8, pp.330-344, 2016.

S. L. Pond and S. D. Frost, Datamonkey: rapid detection of selective pressure on individual sites of codon alignments, Bioinformatics, vol.21, pp.2531-2533, 2005.

D. Kim, TopHat2: accurate alignment of transcriptomes in the presence of insertions, deletions and gene fusions, Genome Biol, vol.14, 2013.

S. Anders, P. T. Pyl, and W. Huber, HTSeq-a Python framework to work with high-throughput sequencing data, Bioinformatics, vol.31, pp.166-169, 2015.

M. D. Robinson, D. J. Mccarthy, and G. K. Smyth, edgeR: a Bioconductor package for differential expression analysis of digital gene expression data, Bioinformatics, vol.26, pp.139-140, 2010.