S. Aendekerk, S. P. Diggle, Z. Song, N. Hoiby, P. Cornelis et al., The MexGHI-OpmD multidrug efflux pump controls growth, antibiotic susceptibility and virulence in Pseudomonas aeruginosa via 4-quinolonedependent cell-to-cell communication, Microbiology, vol.151, pp.1113-1125, 2005.

N. Al-karablieh, H. Weingart, and M. S. Ullrich, The outer membrane protein TolC is required for phytoalexin resistance and virulence of the fire blight pathogen Erwinia amylovora, Microb. Biotechnol, vol.2, pp.465-475, 2009.

A. Alonso and J. L. Martinez, Cloning and characterization of SmeDEF, a novel multidrug efflux pump from Stenotrophomonas maltophilia, Antimicrob. Agents Chemother, vol.44, pp.3079-3086, 2000.

A. Alonso and J. L. Martinez, Expression of multidrug efflux pump SmeDEF by clinical isolates of Stenotrophomonas maltophilia, Antimicrob. Agents Chemother, vol.45, pp.1879-1881, 2001.

A. Alonso, F. Rojo, and J. L. Martinez, Environmental and clinical isolates of Pseudomonas aeruginosa show pathogenic and biodegradative properties irrespective of their origin, Environ. Microbiol, vol.1, pp.421-430, 1999.

C. Alvarez-ortega, J. Olivares, and J. L. Martínez, RND multidrug efflux pumps: what are they good for? Front, 2013.

A. M. Bailey, A. Ivens, R. Kingsley, J. L. Cottell, J. Wain et al., , 2010.

. Rama, AraC/XylS family, influences both virulence and efflux in Salmonella enterica serovar typhimurium, J. Bacteriol, vol.192, pp.1607-1616

R. D. Barabote, O. L. Johnson, E. Zetina, S. K. San-francisco, J. A. Fralick et al., Erwinia chrysanthemi tolC is involved in resistance to antimicrobial plant chemicals and is essential for phytopathogenesis, J. Bacteriol, vol.185, pp.5772-5778, 2003.

A. Bernut, A. Viljoen, C. Dupont, G. Sapriel, M. Blaise et al., Insights into the smooth-to-rough transitioning in Mycobacterium bolletii unravels a functional Tyr residue conserved in all mycobacterial MmpL family members, Mol. Microbiol, vol.99, pp.866-883, 2016.
URL : https://hal.archives-ouvertes.fr/hal-02137603

X. R. Bina, D. Provenzano, N. Nguyen, and J. E. Bina, Vibrio cholerae RND family efflux systems are required for antimicrobial resistance, optimal virulence factor production, and colonization of the infant mouse small intestine, Infect. Immun, vol.76, pp.3595-3605, 2008.

L. M. Bogomolnaya, K. D. Andrews, M. Talamantes, A. Maple, Y. Ragoza et al., The ABC-type efflux pump MacAB protects Salmonella enterica serovar typhimurium from oxidative stress, MBio, vol.4, pp.630-643, 2013.

B. Bommarius, A. Anyanful, Y. Izrayelit, S. Bhatt, E. Cartwright et al., A family of indoles regulate virulence and Shiga toxin production in pathogenic E. coli, PLoS ONE, vol.8, p.54456, 2013.

A. M. Buckley, M. A. Webber, S. Cooles, L. P. Randall, R. M. La-ragione et al., The AcrAB-TolC efflux system of Salmonella enterica serovar typhimurium plays a role in pathogenesis, Cell Microbiol, vol.8, pp.847-856, 2006.

M. Buhl, S. Peter, and M. Willmann, Prevalence and risk factors associated with colonization and infection of extensively drug-resistant Pseudomonas aeruginosa: a systematic review, Expert Rev. Anti Infect. Ther, vol.13, pp.1159-1170, 2015.

A. Burse, H. Weingart, and M. S. Ullrich, NorM, an Erwinia amylovora multidrug efflux pump involved in in vitro competition with other epiphytic bacteria, Appl. Environ. Microbiol, vol.70, pp.693-703, 2004.

A. Burse, H. Weingart, and M. S. Ullrich, The phytoalexin-inducible multidrug efflux pump AcrAB contributes to virulence in the fire blight pathogen, Erwinia amylovora, Mol. Plant Microbe Interact, vol.17, pp.43-54, 2004.

A. Butt, N. Halliday, P. Williams, H. S. Atkins, G. J. Bancroft et al., Burkholderia pseudomallei kynB plays a role in AQ production, biofilm formation, bacterial swarming and persistence, Res. Microbiol, vol.167, pp.159-167, 2016.

L. R. Camacho, P. Constant, C. Raynaud, M. A. Laneelle, J. A. Triccas et al., Analysis of the phthiocerol dimycocerosate locus of Mycobacterium tuberculosis. Evidence that this lipid is involved in the cell wall permeability barrier, J. Biol. Chem, vol.276, 2001.

Y. Y. Chan, H. S. Bian, T. M. Tan, M. E. Mattmann, G. D. Geske et al., Control of quorum sensing by a Burkholderia pseudomallei multidrug efflux pump, J. Bacteriol, vol.189, pp.4320-4324, 2007.

Y. Y. Chan and K. L. Chua, The Burkholderia pseudomallei BpeAB-OprB efflux pump: expression and impact on quorum sensing and virulence, J. Bacteriol, vol.187, pp.4707-4719, 2005.

P. Domenech, M. B. Reed, C. S. Dowd, C. Manca, G. Kaplan et al., The role of MmpL8 in sulfatide biogenesis and virulence of Mycobacterium tuberculosis, J. Biol. Chem, vol.279, pp.21257-21265, 2004.

Q. Duan, M. Zhou, L. Zhu, and G. Zhu, Flagella and bacterial pathogenicity, J. Basic Microbiol, vol.53, pp.1-8, 2013.

D. L. Erickson, R. Endersby, A. Kirkham, K. Stuber, D. D. Vollman et al., Pseudomonas aeruginosa quorum-sensing systems may control virulence factor expression in the lungs of patients with cystic fibrosis, Infect. Immun, vol.70, pp.1783-1790, 2002.

K. Evans, L. Passador, and R. Srikumar, Influence of the MexAB-OprM multidrug efflux system on quorum sensing in Pseudomonas aeruginosa, J. Bacteriol, vol.180, pp.5443-5447, 1998.

D. M. Fernando and A. Kumar, Resistance-nodulation-division multidrug efflux pumps in gram-negative bacteria: role in virulence, Antibiotics (Basel), vol.2, pp.163-181, 2013.

A. Frisk, J. R. Schurr, G. Wang, D. C. Bertucci, L. Marrero et al., Transcriptome analysis of Pseudomonas aeruginosa after interaction with human airway epithelial cells, Infect. Immun, vol.72, pp.5433-5438, 2004.

H. C. Gaede, W. M. Yau, and K. Gawrisch, Electrostatic contributions to indole-lipid interactions, J. Phys. Chem. B, vol.109, pp.13014-13023, 2005.

G. García-león, A. Hernández, S. Hernando-amado, P. Alavi, G. Berg et al., A function of SmeDEF, the major quinolone resistance determinant of Stenotrophomonas maltophilia, is the colonization of plant roots, Appl. Environ. Microbiol, vol.80, pp.4559-4565, 2014.

G. Garcia-leon, F. Salgado, J. C. Oliveros, M. B. Sanchez, and J. L. Martinez, Interplay between intrinsic and acquired resistance to quinolones in Stenotrophomonas maltophilia, Environ. Microbiol, vol.16, pp.1282-1296, 2014.

C. Genestet, A. Le-gouellec, H. Chaker, B. Polack, B. Guery et al., Scavenging of reactive oxygen species by tryptophan metabolites helps Pseudomonas aeruginosa escape neutrophil killing. Free Radic, Biol. Med, vol.73, pp.400-410, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01464090

M. Gilleron, S. Stenger, Z. Mazorra, F. Wittke, S. Mariotti et al., Diacylated sulfoglycolipids are novel mycobacterial antigens stimulating CD1-restricted T cells during infection with Mycobacterium tuberculosis, J. Exp. Med, vol.199, pp.649-659, 2004.
URL : https://hal.archives-ouvertes.fr/hal-00177628

V. C. Gould, A. Okazaki, R. A. Howe, and M. B. Avison, Analysis of sequence variation among smeDEF multi drug efflux pump genes and flanking DNA from defined 16S rRNA subgroups of clinical Stenotrophomonas maltophilia isolates, J. Antimicrob. Chemother, vol.54, pp.348-353, 2004.

S. Grkovic, M. H. Brown, and R. A. Skurray, Transcriptional regulation of multidrug efflux pumps in bacteria, Semin. Cell Dev. Biol, vol.12, pp.225-237, 2001.

S. Grkovic, M. H. Brown, and R. A. Skurray, Regulation of bacterial drug export systems, Microbiol. Mol. Biol. Rev, vol.66, pp.671-701, 2002.

N. Heiniger, R. Troller, P. S. Meier, A. , and C. , Cold shock response of the UspA1 outer membrane adhesin of Moraxella catarrhalis, Infect. Immun, vol.73, pp.8247-8255, 2005.

A. Hernandez, M. B. Sanchez, and J. L. Martinez, Quinolone resistance: much more than predicted, Front. Microbiol, vol.2, p.22, 2011.

S. Hernando-amado, P. Blanco, M. Alcalde-rico, F. Corona, J. A. Reales-calderón et al., Multidrug efflux pumps as main players in intrinsic and acquired resistance to antimicrobials, Drug Resist. Updat, vol.28, pp.13-27, 2016.

Y. Hirakata, R. Srikumar, K. Poole, N. Gotoh, T. Suematsu et al., Multidrug efflux systems play an important role in the invasiveness of Pseudomonas aeruginosa, J. Exp. Med, vol.196, pp.109-118, 2002.

D. A. Hogan, A. Vik, and R. Kolter, A Pseudomonas aeruginosa quorumsensing molecule influences Candida albicans morphology, Mol. Microbiol, vol.54, pp.1212-1223, 2004.

A. Houry, M. Gohar, J. Deschamps, E. Tischenko, S. Aymerich et al., Bacterial swimmers that infiltrate and take over the biofilm matrix, Proc. Natl. Acad. Sci. U.S.A, vol.109, pp.13088-13093, 2012.
URL : https://hal.archives-ouvertes.fr/hal-01004132

S. Jang, Multidrug efflux pumps in Staphylococcus aureus and their clinical implications, J. Microbiol, vol.54, pp.1-8, 2016.

Y. Jin, H. Yang, M. Qiao, J. , and S. , MexT regulates the type III secretion system through MexS and PtrC in Pseudomonas aeruginosa, J. Bacteriol, vol.193, pp.399-410, 2011.

K. Kawamura-sato, K. Shibayama, T. Horii, Y. Iimuma, Y. Arakawa et al., Role of multiple efflux pumps in Escherichia coli in indole expulsion, FEMS Microbiol. Lett, vol.179, pp.345-352, 1999.

K. S. Kaye and J. M. Pogue, Infections caused by resistant gram-negative bacteria: epidemiology and management, Pharmacotherapy, vol.35, pp.949-962, 2015.

T. Khoramian-falsafi, S. Harayama, K. Kutsukake, and J. C. Pechere, Effect of motility and chemotaxis on the invasion of Salmonella typhimurium into HeLa cells, Microb. Pathog, vol.9, p.90039, 1990.

I. Y. Kim, P. L. Pusey, Y. Zhao, S. S. Korban, H. Choi et al., Controlled release of Pantoea agglomerans E325 for biocontrol of fire blight disease of apple, J. Control. Release, vol.161, pp.109-115, 2012.

T. Köhler, C. V. Delden, C. Van-delden, L. K. Curty, M. M. Hamzehpour et al., Overexpression of the MexEF-OprN multidrug efflux system affects cell-to-cell signaling in Pseudomonas aeruginosa, J. Bacteriol, vol.183, pp.5213-5222, 2001.

, III secretion in Pseudomonas aeruginosa, J. Bacteriol, vol.187, pp.1384-1391

A. Lindemann, M. Koch, G. Pessi, A. J. Muller, S. Balsiger et al., Host-specific symbiotic requirement of BdeAB, a RegR-controlled RND-type efflux system in Bradyrhizobium japonicum, FEMS Microbiol. Lett, vol.312, pp.184-191, 2010.

T. T. Luong, S. W. Newell, and C. Y. Lee, Mgr, a novel global regulator in Staphylococcus aureus, J. Bacteriol, vol.185, pp.3703-3710, 2003.

M. Valecillos, A. Rodriguez-palenzuela, P. Lopez-solanilla, and E. , The role of several multidrug resistance systems in Erwinia chrysanthemi pathogenesis, Mol. Plant Microbe Interact, vol.19, pp.607-613, 2006.

J. L. Martinez, Interkingdom signaling and its consequences for human health, Virulence, vol.5, pp.243-244, 2014.

J. L. Martinez and F. Baquero, Interactions among strategies associated with bacterial infection: pathogenicity, epidemicity, and antibiotic resistance, Clin. Microbiol. Rev, vol.15, pp.647-679, 2002.

J. L. Martinez, M. B. Sanchez, L. Martinez-solano, A. Hernandez, L. Garmendia et al., Functional role of bacterial multidrug efflux pumps in microbial natural ecosystems, FEMS Microbiol. Rev, vol.33, pp.430-449, 2009.

L. Martinez-solano, M. D. Macia, A. Fajardo, A. Oliver, and J. L. Martinez, Chronic Pseudomonas aeruginosa infection in chronic obstructive pulmonary disease, Clin. Infect. Dis, vol.47, pp.1526-1533, 2008.

H. Maseda, I. Sawada, K. Saito, H. Uchiyama, T. Nakae et al., Enhancement of the mexAB-oprM efflux pump expression by a quorumsensing autoinducer and its cancellation by a regulator, MexT, of the mexEF-oprN efflux pump operon in Pseudomonas aeruginosa, Antimicrob. Agents Chemother, vol.48, pp.1320-1328, 2004.

J. Méar, E. Kipnis, E. Faure, R. Dessein, G. Schurtz et al., Candida albicans and Pseudomonas aeruginosa interactions: more than an opportunistic criminal association?, Méd. Mal. Infect, vol.43, pp.146-151, 2013.

B. Middleton, H. H. Rodgers, M. Cámara, A. J. Knox, P. Williams et al., Direct detection of N-acylhomoserine lactones in cystic fibrosis sputum, FEMS Microbiol. Lett, vol.207, pp.556-556, 2002.

T. Mima and H. P. Schweizer, The BpeAB-OprB efflux pump of Burkholderia pseudomallei 1026b does not play a role in quorum sensing, virulence factor production, or extrusion of aminoglycosides but is a broadspectrum drug efflux system, Antimicrob. Agents Chemother, vol.54, pp.3113-3120, 2010.

S. Minagawa, H. Inami, T. Kato, S. Sawada, T. Yasuki et al., RND type efflux pump system MexAB-OprM of Pseudomonas aeruginosa selects bacterial languages, 3-oxo-acyl-homoserine lactones, for cell-to-cell communication, BMC Microbiol, vol.12, p.70, 2012.

O. Neyrolles and C. Guilhot, Recent advances in deciphering the contribution of Mycobacterium tuberculosis lipids to pathogenesis, Tuberculosis, vol.91, pp.187-195, 2011.

E. Nikaido, E. Giraud, S. Baucheron, S. Yamasaki, A. Wiedemann et al., Effects of indole on drug resistance and virulence of Salmonella enterica serovar typhimurium revealed by genome-wide analyses, Gut Pathog, vol.4, p.5, 2012.
URL : https://hal.archives-ouvertes.fr/hal-02650888

E. Nikaido, I. Shirosaka, A. Yamaguchi, and K. Nishino, Regulation of the AcrAB multidrug efflux pump in Salmonella enterica serovar typhimurium in response to indole and paraquat, Microbiology, vol.157, pp.648-655, 2011.

E. Nikaido, A. Yamaguchi, and K. Nishino, AcrAB multidrug efflux pump regulation in Salmonella enterica serovar typhimurium by RamA in response to environmental signals, J. Biol. Chem, vol.283, pp.24245-24253, 2008.

J. Olivares, C. Alvarez-ortega, J. F. Linares, F. Rojo, T. Kohler et al., Overproduction of the multidrug efflux pump MexEF-OprN does not impair Pseudomonas aeruginosa fitness in competition tests, but produces specific changes in bacterial regulatory networks, Environ. Microbiol, vol.14, 1968.

A. Oliver, X. Mulet, C. Lopez-causape, J. , and C. , The increasing threat of Pseudomonas aeruginosa high-risk clones, Drug Resist. Updat, vol.2, pp.41-59, 2015.

J. D. Palumbo, C. I. Kado, and D. A. Phillips, An isoflavonoidinducible efflux pump in Agrobacterium tumefaciens is involved in competitive colonization of roots, J. Bacteriol, vol.180, pp.3107-3113, 1998.

C. J. Papadopoulos, C. F. Carson, B. J. Chang, and T. V. Riley, Role of the MexAB-OprM efflux pump of Pseudomonas aeruginosa in tolerance to tea tree (Melaleuca alternifolia) oil and its monoterpene components terpinen-4-ol, 1,8-cineole, and alpha-terpineol, Appl. Environ. Microbiol, vol.74, pp.1932-1935, 2008.

J. P. Pearson, C. Van-delden, and B. H. Iglewski, Active efflux and diffusion are involved in transport of Pseudomonas aeruginosa cell-to-cell signals, J. Bacteriol, vol.181, pp.1203-1210, 1999.

L. J. Piddock, Clinically relevant chromosomally encoded multidrug resistance efflux pumps in bacteria, Clin. Microbiol. Rev, vol.19, pp.382-402, 2006.

L. J. Piddock, Multidrug-resistance efflux pumps -not just for resistance, Nat. Rev. Microbiol, vol.4, pp.629-636, 2006.

S. Pinero-fernandez, C. Chimerel, U. F. Keyser, and D. K. Summers, Indole transport across Escherichia coli membranes, J. Bacteriol, vol.193, pp.1793-1798, 2011.

D. Pletzer and H. Weingart, Characterization and regulation of the resistance-nodulation-cell division-type multidrug efflux pumps MdtABC and MdtUVW from the fire blight pathogen Erwinia amylovora, BMC Microbiol, vol.14, p.185, 2014.

K. Poole, Multidrug resistance in Gram-negative bacteria, Curr. Opin. Microbiol, vol.4, pp.500-508, 2001.

A. M. Prouty, I. E. Brodsky, S. Falkow, and J. S. Gunn, Bile-salt-mediated induction of antimicrobial and bile resistance in Salmonella typhimurium, Microbiology, vol.150, pp.775-783, 2004.

T. Aoyagi, C. Kaito, K. Sekimizu, Y. Omae, Y. Saito et al., Impact of psm-mec in the mobile genetic element on the clinical characteristics and outcome of SCCmec-II methicillin-resistant Staphylococcus aureus bacteraemia in Japan, Clin. Microbiol. Infect, vol.20, pp.912-919, 2014.

J. E. Cassat, N. D. Hammer, J. P. Campbell, M. A. Benson, D. S. Perrien et al., A secreted bacterial protease tailors the Staphylococcus aureus virulence repertoire to modulate bone remodeling during osteomyelitis, Cell Host Microbe, vol.13, pp.759-772, 2013.

S. Castillo-ramirez, J. Corander, P. Marttinen, M. Aldeljawi, W. P. Hanage et al., Phylogeographic variation in recombination rates within a global clone of methicillin-resistant Staphylococcus aureus, Genome Biol, vol.13, p.126, 2012.

S. S. Chatterjee, L. Chen, H. S. Joo, G. Y. Cheung, B. N. Kreiswirth et al., Distribution and regulation of the mobile genetic element-encoded phenol-soluble modulin PSM-mec in methicillin-resistant Staphylococcus aureus, PLoS ONE, vol.6, p.28781, 2011.

S. S. Chatterjee, H. S. Joo, A. C. Duong, T. D. Dieringer, V. Y. Tan et al., Essential Staphylococcus aureus toxin export system, Nat. Med, vol.19, pp.364-367, 2013.

A. G. Cheng, H. K. Kim, M. L. Burts, T. Krausz, O. Schneewind et al., Genetic requirements for Staphylococcus aureus abscess formation and persistence in host tissues, FASEB J, vol.23, pp.3393-3404, 2009.

G. Y. Cheung, H. S. Joo, S. S. Chatterjee, and M. Otto, Phenol-soluble modulins-critical determinants of staphylococcal virulence, FEMS Microbiol. Rev, vol.38, pp.698-719, 2014.

G. Y. Cheung, A. E. Villaruz, H. S. Joo, A. C. Duong, A. J. Yeh et al., Genome-wide analysis of the regulatory function mediated by the small regulatory psm-mec RNA of methicillin-resistant Staphylococcus aureus, Int. J. Med. Microbiol, vol.304, pp.637-644, 2014.

P. Cossart, Molecular and cellular basis of the infection by Listeria monocytogenes: an overview, Int. J. Med. Microbiol, vol.291, pp.401-409, 2002.

J. W. Costerton, Introduction to biofilm, Int. J. Antimicrob. Agents, vol.11, pp.237-239, 1999.

S. S. Dastgheyb, A. E. Villaruz, K. Y. Le, V. Y. Tan, A. C. Duong et al., Role of phenol-soluble modulins in formation of Staphylococcus aureus biofilms in synovial fluid, Infect. Immun, vol.83, pp.2966-2975, 2015.

F. R. Deleo, M. Otto, B. N. Kreiswirth, and H. F. Chambers, Communityassociated meticillin-resistant Staphylococcus aureus, Lancet, vol.375, pp.61999-62000, 2010.

R. H. Deurenberg and E. E. Stobberingh, The molecular evolution of hospital-and community-associated methicillin-resistant Staphylococcus aureus, Curr. Mol. Med, vol.9, pp.100-115, 2009.

B. A. Diep and M. Otto, The role of virulence determinants in community-associated MRSA pathogenesis, Trends Microbiol, vol.16, pp.361-369, 2008.

A. C. Duong, G. Y. Cheung, and M. Otto, Interaction of phenolsoluble modulins with phosphatidylcholine vesicles, vol.1, pp.3-11, 2012.

J. Gao and G. C. Stewart, Regulatory elements of the Staphylococcus aureus protein A (Spa) promoter, J. Bacteriol, vol.186, pp.3738-3748, 2004.

T. Geiger, P. Francois, M. Liebeke, M. Fraunholz, C. Goerke et al., The stringent response of Staphylococcus aureus and its impact on survival after phagocytosis through the induction of intracellular PSMs expression, PLoS Pathog, vol.8, p.1003016, 2012.

M. I. Gomez, A. Lee, B. Reddy, A. Muir, G. Soong et al., Staphylococcus aureus protein A induces airway epithelial inflammatory responses by activating TNFR1, Nat. Med, vol.10, pp.842-848, 2004.

E. Huntzinger, S. Boisset, C. Saveanu, Y. Benito, T. Geissmann et al., Staphylococcus aureus RNAIII and the endoribonuclease III coordinately regulate spa gene expression, EMBO J, vol.24, pp.824-835, 2005.
URL : https://hal.archives-ouvertes.fr/pasteur-01404709

M. Ikuo, G. Nagano, Y. Saito, H. Mao, K. Sekimizu et al., Inhibition of exotoxin production by mobile genetic element SCCmec-encoded psm-mec RNA is conserved in staphylococcal species, PLoS ONE, vol.9, p.100260, 2014.

T. Ito, K. Okuma, X. X. Ma, H. Yuzawa, and K. Hiramatsu, Insights on antibiotic resistance of Staphylococcus aureus from its whole genome: genomic island SCC, Drug Resist. Updat, vol.6, pp.41-52, 2003.

, Classification of staphylococcal cassette chromosome mec (SCCmec): guidelines for reporting novel SCCmec elements, Antimicrob. Agents Chemother, vol.53, pp.4961-4967, 2009.

C. Josenhans and S. Suerbaum, The role of motility as a virulence factor in bacteria, Int. J. Med. Microbiol, vol.291, pp.605-614, 2002.

M. Josten, J. Dischinger, C. Szekat, M. Reif, N. Al-sabti et al., Identification of agr-positive methicillin-resistant Staphylococcus aureus harbouring the class A mec complex by MALDI-TOF mass spectrometry, Int. J. Med. Microbiol, vol.304, pp.1018-1023, 2014.

C. Kaito, Y. Omae, Y. Matsumoto, M. Nagata, H. Yamaguchi et al., A novel gene, fudoh, in the SCCmec region suppresses the colony spreading ability and virulence of Staphylococcus aureus, PLoS ONE, vol.3, p.3921, 2008.

C. Kaito, Y. Saito, M. Ikuo, Y. Omae, H. Mao et al., Mobile genetic element SCCmec-encoded psm-mec RNA suppresses translation of agrA and attenuates MRSA virulence, PLoS Pathog, vol.9, p.1003269, 2013.

C. Kaito, Y. Saito, G. Nagano, M. Ikuo, Y. Omae et al., Transcription and translation products of the cytolysin gene psm-mec on the mobile genetic element SCCmec regulate Staphylococcus aureus virulence, PLoS Pathog, vol.7, p.1001267, 2011.

C. Kaito and K. Sekimizu, Colony spreading in Staphylococcus aureus, J. Bacteriol, vol.189, pp.2553-2557, 2007.

D. B. Kearns, A field guide to bacterial swarming motility, Nat. Rev. Microbiol, vol.8, pp.634-644, 2010.

H. K. Kim, H. Y. Kim, O. Schneewind, and D. Missiakas, Identifying protective antigens of Staphylococcus aureus, a pathogen that suppresses host immune responses, FASEB J, vol.25, pp.3605-3612, 2011.

K. F. Kong, C. Vuong, and M. Otto, Staphylococcus quorum sensing in biofilm formation and infection, Int. J. Med. Microbiol, vol.296, pp.133-139, 2006.

D. Kretschmer, A. K. Gleske, M. Rautenberg, R. Wang, M. Köberle et al., Human formyl peptide receptor 2 senses highly pathogenic Staphylococcus aureus, Cell Host Microbe, vol.7, pp.463-473, 2010.

E. S. Krukonis and V. J. Dirita, From motility to virulence: sensing and responding to environmental signals in Vibrio cholerae, Curr. Opin. Microbiol, vol.6, pp.186-190, 2003.

M. Laabei, W. D. Jamieson, Y. Yang, J. Van-den-elsen, and A. T. Jenkins, Investigating the lytic activity and structural properties of Staphylococcus aureus phenol soluble modulin (PSM) peptide toxins, Biochim. Biophys. Acta, vol.1838, pp.3153-3161, 2014.

M. Li, B. A. Diep, A. Villaruz, E. Braughton, K. et al., Evolution of virulence in epidemic community-associated methicillinresistant Staphylococcus aureus, Proc. Natl. Acad. Sci. U.S.A, vol.106, pp.5883-5888, 2009.

S. Li, R. L. Skov, X. Han, A. R. Larsen, J. Larsen et al., Novel types of staphylococcal cassette chromosome mec elements identified in clonal complex 398 methicillin-resistant Staphylococcus aureus strains, Antimicrob. Agents Chemother, vol.55, pp.3046-3050, 2011.

M. H. Lin, W. J. Ke, C. C. Liu, Y. , and M. W. , Modulation of Staphylococcus aureus spreading by water, Sci. Rep, vol.6, p.25233, 2016.

F. D. Lowy, Staphylococcus aureus infections, N. Engl. J. Med, vol.339, pp.520-532, 1998.

N. Merino, A. Toledo-arana, M. Vergara-irigaray, J. Valle, C. Solano et al., Protein A-mediated multicellular behavior in Staphylococcus aureus, J. Bacteriol, vol.191, pp.832-843, 2009.

I. Migeotte, D. Communi, and M. Parmentier, Formyl peptide receptors: a promiscuous subfamily of G protein-coupled receptors controlling immune responses, Cytokine Growth Factor Rev, vol.17, pp.501-519, 2006.

S. Monecke, I. Engelmann, M. Archambault, D. C. Coleman, G. W. Coombs et al., Distribution of SCCmec-associated phenol-soluble modulin in staphylococci, Mol. Cell. Probes, vol.26, pp.99-103, 2012.

R. P. Novick, Autoinduction and signal transduction in the regulation of staphylococcal virulence, Mol. Microbiol, vol.48, pp.1429-1449, 2003.

U. Nübel, J. Dordel, K. Kurt, B. Strommenger, H. Westh et al., A timescale for evolution, population expansion, and spatial spread of an emerging clone of methicillin-resistant Staphylococcus aureus, PLoS Pathog, vol.6, p.1000855, 2010.

Y. Omae, K. Sekimizu, and C. Kaito, Inhibition of colony-spreading activity of Staphylococcus aureus by secretion of delta-hemolysin, J. Biol. Chem, vol.287, pp.15570-15579, 2012.

Y. Oogai, M. Matsuo, M. Hashimoto, F. Kato, M. Sugai et al., Expression of virulence factors by Staphylococcus aureus grown in serum, Appl. Environ. Microbiol, vol.77, pp.8097-8105, 2011.

M. Otto, Staphylococcal biofilms, Curr. Top. Microbiol. Immunol, vol.322, pp.207-228, 2008.

M. Otto, Staphylococcus epidermidis-the 'accidental' pathogen, Nat. Rev. Microbiol, vol.7, pp.555-567, 2009.

M. Otto, MRSA virulence and spread, Cell. Microbiol, vol.14, pp.1513-1521, 2012.

M. Otto, Community-associated MRSA: what makes them special?, Int. J. Med. Microbiol, vol.303, 2013.

M. Otto, Staphylococcal infections: mechanisms of biofilm maturation and detachment as critical determinants of pathogenicity, Annu. Rev. Med, vol.64, pp.175-188, 2013.

M. Otto, Coagulase-negative staphylococci as reservoirs of genes facilitating MRSA infection: staphylococcal commensal species such as Staphylococcus epidermidis are being recognized as important sources of genes promoting MRSA colonization and virulence, Bioessays, vol.35, pp.4-11, 2013.

M. Otto, Staphylococcus aureus toxins, Curr. Opin. Microbiol, vol.17, pp.32-37, 2014.

S. Periasamy, H. S. Joo, A. C. Duong, T. H. Bach, V. Y. Tan et al., How Staphylococcus aureus biofilms develop their characteristic structure, Proc. Natl. Acad. Sci. U.S.A, vol.109, pp.1281-1286, 2012.

S. Y. Queck, M. Jameson-lee, A. E. Villaruz, T. H. Bach, B. A. Khan et al., RNAIII-independent target gene control by the agr quorum-sensing system: insight into the evolution of virulence regulation in Staphylococcus aureus, Mol. Cell, vol.32, pp.150-158, 2008.

S. Y. Queck, B. A. Khan, R. Wang, T. H. Bach, D. Kretschmer et al., Mobile genetic element-encoded cytolysin connects virulence to methicillin resistance in MRSA, PLoS Pathog, vol.5, p.1000533, 2009.

B. Schulte, G. Bierbaum, K. Pohl, C. Goerke, and C. Wolz, Diversification of clonal complex 5 methicillin-resistant Staphylococcus aureus strains (Rhine-Hesse clone) within Germany, J. Clin. Microbiol, vol.51, pp.212-216, 2013.

A. C. Shore, C. , and D. C. , Staphylococcal cassette chromosome mec: recent advances and new insights, Int. J. Med. Microbiol, vol.303, pp.350-359, 2013.

A. C. Shore, E. C. Deasy, P. Slickers, G. Brennan, B. O'connell et al., Detection of staphylococcal cassette chromosome mec type XI carrying highly divergent mecA, mecI, mecR1, blaZ, and ccr genes in human clinical isolates of clonal complex 130 methicillin-resistant REFERENCES, 2011.

R. N. Allan, P. Skipp, J. Jefferies, S. C. Clarke, S. N. Faust et al., Pronounced metabolic changes in adaptation to biofilm growth by Streptococcus pneumoniae, PLoS ONE, vol.9, p.107015, 2014.

I. Auzat, S. Chapuy-regaud, G. Le-bras, D. Santos, A. D. Ogunniyi et al., The NADH oxidase of Streptococcus pneumoniae: its involvement in competence and virulence, Mol. Microbiol, vol.34, pp.1018-1028, 1999.

A. Bidossi, L. Mulas, F. Decorosi, L. Colomba, S. Ricci et al., A functional genomics approach to establish the complement of carbohydrate transporters in Streptococcus pneumoniae, PLoS ONE, vol.7, p.33320, 2012.

T. Bjarnsholt, O. Ciofu, S. Molin, M. Givskov, and N. Hoiby, Applying insights from biofilm biology to drug development -can a new approach be developed?, Nat. Rev. Drug Discov, vol.12, pp.791-808, 2013.

J. Brassard, M. Gottschalk, and S. Quessy, Cloning and purification of the Streptococcus suis serotype 2 glyceraldehyde-3-phosphate dehydrogenase and its involvement as an adhesin, Vet. Microbiol, vol.102, pp.87-94, 2004.

M. P. Cabral, N. C. Soares, J. Aranda, J. R. Parreira, C. Rumbo et al., Proteomic and functional analyses reveal a unique lifestyle for Acinetobacter baumannii biofilms and a key role for histidine metabolism, J. Proteome Res, vol.10, pp.3399-3417, 2011.

H. Carsenti-etesse, J. Durant, J. Entenza, V. Mondain, C. Pradier et al., Effects of subinhibitory concentrations of vancomycin and teicoplanin on adherence of staphylococci to tissue culture plates, Antimicrob. Agents Chemother, vol.37, pp.921-923, 1993.

J. W. Costerton, Z. Lewandowski, D. Debeer, D. Caldwell, D. Korber et al., Biofilms, the customized microniche, J. Bacteriol, vol.176, pp.2137-2142, 1994.

S. F. Dallo, J. Denno, S. Hong, and T. Weitao, Adhesion of Acinetobacter baumannii to extracellular proteins detected by a live cell-protein binding assay, Ethn. Dis, vol.20, issue.1, pp.1-7, 2010.

M. E. Davey and G. A. Toole, Microbial biofilms: from ecology to molecular genetics. Microbiol, Mol. Biol. Rev, vol.64, pp.847-867, 2000.

W. M. Dunne, Effects of subinhibitory concentrations of vancomycin or cefamandole on biofilm production by coagulase-negative staphylococci, Antimicrob. Agents Chemother, vol.34, pp.390-393, 1990.

S. A. Frese, A. K. Benson, G. W. Tannock, D. M. Loach, J. Kim et al., The evolution of host specialization in the vertebrate gut symbiont Lactobacillus reuteri, PLoS Genet, vol.7, p.1001314, 2011.

S. Fujimura, T. Sato, T. Mikami, T. Kikuchi, K. Gomi et al., Combined efficacy of clarithromycin plus cefazolin or vancomycin against Staphylococcus aureus biofilms formed on titanium medical devices, Int. J. Antimicrob. Agents, vol.32, pp.481-484, 2008.

H. Geng, L. Zhu, Y. Yuan, W. Zhang, W. Li et al., Identification and characterization of novel immunogenic proteins of Streptococcus suis serotype 2, J. Proteome Res, vol.7, pp.4132-4142, 2008.

P. Gilbert, J. Das, and I. Foley, Biofilm susceptibility to antimicrobials, Adv. Dent. Res, vol.11, pp.160-167, 1997.

M. Gottschalk, M. Segura, and J. Xu, Streptococcus suis infections in humans: the Chinese experience and the situation in North America, Anim. Health Res. Rev, vol.8, pp.29-45, 2007.

M. Gottschalk, J. G. Xu, C. Calzas, and M. Segura, Streptococcus suis: a new emerging or an old neglected zoonotic pathogen?, Future Microbiol, vol.5, pp.371-391, 2010.

R. R. Grau, P. De-ona, M. Kunert, C. Lenini, R. Gallegos-monterrosa et al., A duo of potassium-responsive histidine kinases govern the multicellular destiny of Bacillus subtilis, vol.6, pp.581-596, 2015.

T. Haertel, E. Eylert, C. Schulz, L. Petruschka, P. Gierok et al., Characterization of central carbon metabolism of Streptococcus pneumoniae by isotopologue profiling, J. Biol. Chem, vol.287, pp.4260-4274, 2012.

G. G. Hardy, A. D. Magee, C. L. Ventura, M. J. Caimano, and J. Yother, Essential role for cellular phosphoglucomutase in virulence of type 3 Streptococcus pneumoniae, Infect. Immun, vol.69, pp.2309-2317, 2001.

C. Marion, A. E. Aten, S. A. Woodiga, and S. J. King, Identification of an ATPase, MsmK, which energizes multiple carbohydrate ABC transporters in Streptococcus pneumoniae, Infect. Immun, vol.79, pp.4193-4200, 2011.

T. Mathur, S. Singhal, S. Khan, D. J. Upadhyay, T. Fatma et al., Detection of biofilm formation among the clinical isolates of Staphylococci: an evaluation of three different screening methods, Indian J. Med. Microbiol, vol.24, pp.25-29, 2006.

A. L. Mcloon, I. Kolodkin-gal, S. M. Rubinstein, R. Kolter, and R. Losick, Spatial regulation of histidine kinases governing biofilm formation in Bacillus subtilis, J. Bacteriol, vol.193, pp.679-685, 2011.

E. J. Munoz-elias, J. Marcano, and A. Camilli, Isolation of Streptococcus pneumoniae biofilm mutants and their characterization during nasopharyngeal colonization, Infect. Immun, vol.76, pp.5049-5061, 2008.

Y. Okajima, S. Kobayakawa, A. Tsuji, and T. Tochikubo, Biofilm formation by Staphylococcus epidermidis on intraocular lens material, Invest. Ophthalmol. Vis. Sci, vol.47, pp.2971-2975, 2006.

T. K. Pham, S. Roy, J. Noirel, I. Douglas, P. C. Wright et al., A quantitative proteomic analysis of biofilm adaptation by the periodontal pathogen Tannerella forsythia, Proteomics, vol.10, pp.3130-3141, 2010.

S. Planchon, M. Desvaux, I. Chafsey, C. Chambon, S. Leroy et al., Comparative subproteome analyses of planktonic and sessile Staphylococcus xylosus C2a: new insight in cell physiology of a coagulasenegative staphylococcus in biofilm, J. Proteome Res, vol.8, pp.1797-1809, 2009.
URL : https://hal.archives-ouvertes.fr/hal-02657511

E. Presterl, M. Suchomel, M. Eder, S. Reichmann, A. Lassnigg et al., Effects of alcohols, povidone-iodine and hydrogen peroxide on biofilms of Staphylococcus epidermidis, J. Antimicrob. Chemother, vol.60, pp.417-420, 2007.

R. D. Pridmore, B. Berger, F. Desiere, D. Vilanova, C. Barretto et al., The genome sequence of the probiotic intestinal bacterium Lactobacillus johnsonii NCC 533, Proc. Natl. Acad. Sci. U.S.A, vol.101, pp.2512-2517, 2004.

S. Rachid, K. Ohlsen, W. Witte, J. Hacker, and W. Ziebuhr, Effect of subinhibitory antibiotic concentrations on polysaccharide intercellular adhesin expression in biofilm-forming Staphylococcus epidermidis, Antimicrob. Agents Chemother, vol.44, pp.3357-3363, 2000.

M. E. Rupp and K. E. Hamer, Effect of subinhibitory concentrations of vancomycin, cefazolin, ofloxacin, L-ofloxacin and D-ofloxacin on adherence to intravascular catheters and biofilm formation by Staphylococcus epidermidis, J. Antimicrob. Chemother, vol.41, pp.155-161, 1998.

K. Sauer, The genomics and proteomics of biofilm formation, Genome Biol, vol.4, p.219, 2003.

K. Sauer, A. K. Camper, G. D. Ehrlich, J. W. Costerton, and D. G. Davies, Pseudomonas aeruginosa displays multiple phenotypes during development as a biofilm, J. Bacteriol, vol.184, pp.1140-1154, 2002.

A. Selvaraj, V. Sumantran, N. Chowdhary, and G. R. Kumar, Prediction and classification of ABC transporters in Geobacter sulfurreducens PCA using computational approaches, Curr. Bioinform, vol.9, pp.166-172, 2014.

M. Shemesh and Y. Chai, A combination of glycerol and manganese promotes biofilm formation in Bacillus subtilis via histidine kinase KinD signaling, J. Bacteriol, vol.195, pp.2747-2754, 2013.

S. Sriskandan and J. D. Slater, Invasive disease and toxic shock due to zoonotic Streptococcus suis: an emerging infection in the East, PLoS Med, vol.3, p.187, 2006.

R. D. Unwin, J. R. Griffiths, and A. D. Whetton, Simultaneous analysis of relative protein expression levels across multiple samples using iTRAQ isobaric tags with 2D nano LC-MS/MS, Nat. Protoc, vol.5, pp.1574-1582, 2010.

J. Walter, P. Chagnaud, G. W. Tannock, D. M. Loach, F. Bello et al., A high-molecular-mass surface protein (Lsp) and methionine sulfoxide reductase B (MsrB) contribute to the ecological performance of, 2005.

M. Anderson, Y. H. Chen, E. K. Butler, and D. M. Missiakas, EsaD, a secretion factor for the Ess pathway in Staphylococcus aureus, J. Bacteriol, vol.193, pp.1583-1589, 2011.

J. M. Andrews, Determination of minimum inhibitory concentrations, J. Antimicrob. Chemother, vol.48, pp.5-16, 2001.

S. S. Atshan, M. N. Shamsudin, L. T. Lung, K. H. Ling, Z. Sekawi et al., Improved method for the isolation of RNA from bacteria refractory to disruption, including S. aureus producing biofilm, Gene, vol.494, pp.219-224, 2012.

T. Bae, A. K. Banger, A. Wallace, E. M. Glass, F. Aslund et al., Staphylococcus aureus virulence genes identified by bursa aurealis mutagenesis and nematode killing, Proc. Natl. Acad. Sci. U.S.A, vol.101, pp.12312-12317, 2004.

T. Bae and O. Schneewind, Allelic replacement in Staphylococcus aureus with inducible counter-selection, Plasmid, vol.55, pp.58-63, 2006.

J. Bigger, Treatment of staphylococcal infections with penicillin by intermittent sterilisation, Lancet, vol.244, pp.74210-74213, 1944.

M. L. Burts, A. C. Dedent, and D. M. Missiakas, EsaC substrate for the ESAT-6 secretion pathway and its role in persistent infections of Staphylococcus aureus, Mol. Microbiol, vol.69, pp.736-746, 2008.

M. Carrel, E. N. Perencevich, and M. Z. David, USA300 methicillinresistant Staphylococcus aureus, Emer. Infect. Dis. J, vol.21, 1973.

A. Clauditz, A. Resch, K. P. Wieland, A. Peschel, and F. Götz, Staphyloxanthin plays a role in the fitness of Staphylococcus aureus and its ability to cope with oxidative stress, Infect. Immun, vol.74, pp.4950-4953, 2006.

M. O. Clements, S. P. Watson, R. K. Poole, and S. J. Foster, CtaA of Staphylococcus aureus is required for starvation survival, recovery, and cytochrome biosynthesis, J. Bacteriol, vol.181, pp.501-507, 1999.

L. V. Collins, S. A. Kristian, C. Weidenmaier, M. Faigle, K. P. Van-kessel et al., Staphylococcus aureus strains lacking D-alanine modifications of teichoic acids are highly susceptible to human neutrophil killing and are virulence attenuated in mice, J. Infect. Dis, vol.186, pp.214-219, 2002.

S. N. Coulter, W. R. Schwan, E. Y. Ng, M. H. Langhorne, H. D. Ritchie et al., Staphylococcus aureus genetic loci impacting growth and survival in multiple infection environments, Mol. Microbiol, vol.30, pp.393-404, 1998.

B. A. Diep, H. A. Carleton, R. F. Chang, G. F. Sensabaugh, and F. Perdreau-remington, Roles of 34 virulence genes in the evolution of hospitaland community-associated strains of methicillin-resistant Staphylococcus aureus, J. Infect. Dis, vol.193, pp.1495-1503, 2006.

D. L. Drabkin, Metabolism of the hemin chromoproteins, Physiol. Rev, vol.31, pp.345-431, 1951.

E. Germain, D. Castro-roa, N. Zenkin, and K. Gerdes, Molecular mechanism of bacterial persistence by HipA, Mol. Cell, vol.52, pp.248-254, 2013.

P. Giachino, S. Engelmann, and M. Bischoff, Sigma(B) activity depends on RsbU in Staphylococcus aureus, J. Bacteriol, vol.183, pp.1843-1852, 2001.

N. D. Hammer, L. A. Schurig-briccio, S. Y. Gerdes, R. B. Gennis, and E. P. Skaar, CtaM is required for menaquinol oxidase aa 3 function in Staphylococcus aureus, mBio, vol.7, pp.823-839, 2016.

J. Han, L. He, W. Shi, X. Xu, S. Wang et al., Glycerol uptake is important for L-form formation and persistence in Staphylococcus aureus, PLoS ONE, vol.9, p.108325, 2014.

L. Hederstedt, A. Lewin, and M. Throne-holst, Heme A synthase enzyme functions dissected by mutagenesis of Bacillus subtilis CtaA, J. Bacteriol, vol.187, pp.8361-8369, 2005.

I. Keren, N. Kaldalu, A. Spoering, Y. Wang, L. et al., Persister cells and tolerance to antimicrobials, FEMS Microbiol. Lett, vol.230, pp.13-18, 2004.

S. B. Korch, T. A. Henderson, and T. M. Hill, Characterization of the hipA7 allele of Escherichia coli and evidence that high persistence is governed by (p)ppGpp synthesis, Mol. Microbiol, vol.50, pp.1199-1213, 2003.

I. Kullik, P. Giachino, and T. Fuchs, Deletion of the alternative sigma factor sigmaB in Staphylococcus aureus reveals its function as a global regulator of virulence genes, J. Bacteriol, vol.180, pp.4814-4820, 1998.

B. W. Kwan, J. A. Valenta, M. J. Benedik, and T. K. Wood, Arrested protein synthesis increases persister-like cell formation, Antimicrob. Agents Chemother, vol.57, pp.1468-1473, 2013.

L. Lan, A. Cheng, P. M. Dunman, D. Missiakas, and C. He, Golden pigment production and virulence gene expression are affected by metabolisms in Staphylococcus aureus, J. Bacteriol, vol.192, pp.3068-3077, 2010.

S. Lechner, K. Lewis, and R. Bertram, Staphylococcus aureus persisters tolerant to bactericidal antibiotics, J. Mol. Microbiol. Biotechnol, vol.22, pp.235-244, 2012.

K. Lewis, Riddle of biofilm resistance, Antimicrob. Agents Chemother, vol.45, pp.999-1007, 2001.

K. Lewis, Persister cells: molecular mechanisms related to antibiotic tolerance, pp.121-133, 2012.

M. Li, X. Du, A. E. Villaruz, B. A. Diep, D. Wang et al., MRSA epidemic linked to a quickly spreading colonization and virulence determinant, Nat. Med, vol.18, pp.816-819, 2012.

G. Y. Liu, Molecular pathogenesis of Staphylococcus aureus infection, Pediatr Res, vol.65, issue.5, 2009.

G. Y. Liu, A. Essex, J. T. Buchanan, V. Datta, H. M. Hoffman et al., Staphylococcus aureus golden pigment impairs neutrophil killing and promotes virulence through its antioxidant activity, J. Exp. Med, vol.202, pp.209-215, 2005.

M. Liu, W. N. Tanaka, H. Zhu, G. Xie, D. M. Dooley et al., Direct hemin transfer from IsdA to IsdC in the iron-regulated surface determinant (Isd) heme acquisition system of Staphylococcus aureus, J. Biol. Chem, vol.283, pp.6668-6676, 2008.

K. J. Livak and T. D. Schmittgen, Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method, Methods, vol.25, pp.402-408, 2001.

M. A. Lobritz, P. Belenky, C. B. Porter, A. Gutierrez, J. H. Yang et al., Antibiotic efficacy is linked to bacterial cellular respiration, Proc. Natl. Acad. Sci. U.S.A, vol.112, pp.8173-8180, 2015.

C. Ma, S. Sim, W. Shi, L. Du, D. Xing et al., Energy production genes sucB and ubiF are involved in persister survival and tolerance to multiple antibiotics and stresses in Escherichia coli, FEMS Microbiol. Lett, vol.303, pp.33-40, 2010.

C. Alcántara, A. Blasco, M. Zúñiga, and V. Monedero, Accumulation of polyphosphate in Lactobacillus spp. and its involvement in stress resistance, Appl. Environ. Microbiol, vol.80, pp.1650-1659, 2014.

K. J. Aldred, R. J. Kerns, and N. Osheroff, Mechanism of quinolone action and resistance, Biochemistry, vol.53, pp.1565-1574, 2014.

E. K. Andersson, C. Bengtsson, M. L. Evans, E. Chorell, M. Sellstedt et al., Modulation of curli assembly and pellicle biofilm formation by chemical and protein chaperones, Chem. Biol, vol.20, pp.1245-1254, 2013.

D. Ault-riché, C. D. Fraley, C. M. Tzeng, and A. Kornberg, Novel assay reveals multiple pathways regulating stress-induced accumulations of inorganic polyphosphate in Escherichia coli, J. Bacteriol, vol.180, pp.1841-1847, 1998.

M. Becherelli, J. Tao, and N. S. Ryder, Involvement of heat shock proteins in Candida albicans biofilm formation, J. Mol. Microbiol. Biotechnol, vol.23, pp.396-400, 2013.

G. Benthall, R. E. Touzel, C. K. Hind, R. W. Titball, J. M. Sutton et al., Evaluation of antibiotic efficacy against infections caused by planktonic or biofilm cultures of Pseudomonas aeruginosa and Klebsiella pneumoniae in Galleria mellonella, Int. J. Antimicrob. Agents, vol.46, pp.538-545, 2015.

C. R. Bergeron, C. Prussing, P. Boerlin, D. Daignault, L. Dutil et al., Chicken as reservoir for extraintestinal pathogenic Escherichia coli in humans, Canada. Emerg. Infect. Dis, vol.18, pp.415-421, 2012.

A. Brisson-noël, P. Trieu-cuot, and P. Courvalin, Mechanism of action of spiramycin and other macrolides, J. Antimicrob. Chemother, vol.22, pp.13-23, 1988.

M. R. Brown and A. Kornberg, Inorganic polyphosphate in the origin and survival of species, Proc. Natl. Acad. Sci. U.S.A, vol.101, pp.16085-16087, 2004.

K. Bush, Antimicrobial agents targeting bacterial cell walls and cell membranes, Rev. Sci. Tech, vol.31, pp.43-56, 2012.

R. R. Chaudhuri and I. R. Henderson, The evolution of the Escherichia coli phylogeny, Infect. Genet. Evol, vol.12, pp.214-226, 2012.

S. L. Chua, Y. Liu, J. K. Yam, Y. Chen, R. M. Vejborg et al., Dispersed cells represent a distinct stage in the transition from bacterial biofilm to planktonic lifestyles, Nat. Commun, vol.21, p.4462, 2014.

A. Dalhoff, Transport of aminoglycosides in Escherichia coli, Z. Bakteriol. Mikrobiol. Hyg. A, vol.254, pp.379-387, 1983.

B. D. Davis, Mechanism of bactericidal action of aminoglycosides, Microbiol. Rev, vol.51, pp.341-350, 1987.

C. Dressaire, R. N. Moreira, S. Barahona, A. P. Alves-de-matos, and C. M. Arraiano, BolA is a transcriptional switch that turns off motility and turns on biofilm development, MBio, vol.6, pp.2352-02314, 2015.

C. D. Fraley, M. H. Rashid, S. S. Lee, R. Gottschalk, J. Harrison et al., A polyphosphate kinase 1 (ppk1) mutant of Pseudomonas aeruginosa exhibits multiple ultrastructural and functional defects, Proc. Natl. Acad. Sci. U.S.A, vol.104, pp.3526-3531, 2007.

J. Gaschignard, C. Levy, O. Romain, R. Cohen, E. Bingen et al., Neonatal bacterial meningitis: 444 cases in 7 years, Pediatr. Infect. Dis. J, vol.30, pp.212-217, 2011.

J. P. Girardeau, L. Lalioui, A. M. Said, C. De-champs, L. Bouguénec et al., Extended virulence genotype of pathogenic Escherichia coli isolates carrying the afa-8 operon: evidence of similarities between isolates from humans and animals with extraintestinal infections, J. Clin. Microbial, vol.41, pp.218-226, 2003.
URL : https://hal.archives-ouvertes.fr/hal-02683390

A. Grau-campistany, Á. Manresa, M. Pujol, F. Rabanal, and Y. Cajal, , 2015.

, Tryptophan-containing lipopeptide antibiotics derived from polymyxin B with activity against Gram positive and Gram negative bacteria, Biochim. Biophys. Acta, vol.1858, pp.333-343

M. J. Gray, W. Y. Wholey, N. O. Wagner, C. M. Cremers, A. Mueller-schickert et al., Polyphosphate is a primordial chaperone, Mol. Cell, vol.53, pp.689-699, 2014.

A. M. Grudniak, K. Pawlak, K. Bartosik, and I. K. Wolska, Physiological consequences of mutations in the htpG heat shock gene of Escherichia coli, Mutat. Res. 745, vol.746, pp.1-5, 2013.

Y. L. Guo, H. Mayer, W. Vollmer, D. Dittrich, P. Sander et al., Polyphosphates from Mycobacterium bovis-potent inhibitors of class III adenylate cyclases, FEBS J, vol.276, pp.1094-1103, 2009.

Y. He, T. Xu, L. E. Fossheim, and X. H. Zhang, FliC, a flagellin protein, is essential for the growth and virulence of fish pathogen Edwardsiella tarda, PLoS ONE, vol.7, p.45070, 2012.

H. Hof, Antimicrobial therapy with nitroheterocyclic compounds, for example, metronidazole and nitrofurantoin, Immun. Infekt, vol.16, pp.220-225, 1988.

W. S. Hu, H. W. Chen, R. Y. Zhang, C. Y. Huang, and C. F. Shen, The expression levels of outer membrane proteins STM1530 and OmpD, which are influenced by the CpxAR and BaeSR two-component systems, play important roles in the ceftriaxone resistance of Salmonella enterica serovar Typhimurium, Antimicrob. Agents Chemother, vol.55, pp.3829-3837, 2011.

J. R. Johnson, M. A. Kuskowski, K. Smith, T. T. O'bryan, and S. Tatini, , 2005.

, Antimicrobial-resistant and extraintestinal pathogenic Escherichia coli in retail foods, J. Infect. Dis, vol.191, pp.1040-1049

M. Kubista, J. M. Andrade, M. Bengtsson, A. Forootan, J. Jonák et al., The real-time polymerase chain reaction, Mol. Aspects Med, vol.27, pp.195-125, 2006.

G. Laverty, S. P. Gorman, and B. F. Gilmore, Biomolecular mechanisms of Pseudomonas aeruginosa and Escherichia coli biofilm formation, Pathogens, vol.3, pp.596-632, 2014.

Y. Li, O. E. Petrova, S. Su, G. W. Lau, W. Panmanee et al., , 2014.

. Bdla, DipA and induced dispersion contribute to acute virulence and chronic persistence of Pseudomonas aeruginosa, PLoS Pathog, vol.10, p.1004168

C. Liu, H. Zheng, M. Yang, Z. Xu, X. Wang et al., Genome analysis and in vivo virulence of porcine extraintestinal pathogenic Escherichia coli strain PCN033, BMC Genomics, vol.16, p.717, 2015.

D. M. Lord, A. Uzgoren-baran, V. W. Soo, T. K. Wood, W. Peti et al., McbR/YncC: implications for the mechanism of ligand and DNA binding by a bacterial GntR transcriptional regulator involved in biofilm formation, Biochemistry, vol.53, pp.7223-7231, 2014.

M. Mellata, Human and avian extraintestinal pathogenic Escherichia coli: infections, zoonotic risks, and antibiotic resistance trends, Foodborne Pathog. Dis, vol.10, pp.916-932, 2013.

F. C. Neidhardt, P. L. Bloch, and D. F. Smith, Culture medium for enterobacteria, J. Bacteriol, vol.119, pp.736-747, 1974.

W. J. Penfold, N. , and D. , The relation of concentration of food supply to the generation-time of bacteria, J. Hyg, vol.12, pp.527-531, 1912.

E. Pérez-trallero and L. Iglesias, Tetracyclines, sulfonamides and metronidazole, Enferm. Infecc. Microbiol. Clin, vol.21, pp.520-528, 2003.

D. Pletzer, A. Stahl, A. E. Oja, and H. Weingart, Role of the cell envelope stress regulators BaeR and CpxR in control of RND-type multidrug efflux pumps and transcriptional cross talk with exopolysaccharide synthesis in Erwinia amylovora, Arch. Microbiol, vol.197, pp.761-772, 2015.

Y. Qu, A. J. Daley, T. S. Istivan, D. A. Rouch, and M. A. Deighton, Densely adherent growth mode, rather than extracellular polymer substance matrix build-up ability, contributes to high resistance of Staphylococcus epidermidis biofilms to antibiotics, J. Antimicrob. Chemother, vol.65, pp.1405-1411, 2010.

M. H. Rashid, K. Rumbaugh, L. Passador, D. G. Davies, A. N. Hamood et al., Polyphosphate kinase is essential for biofilm development, quorum sensing, and virulence of Pseudomonas aeruginosa, Proc. Natl. Acad. Sci.U.S.A, vol.97, pp.9636-9641, 2000.

N. Robbins, P. Uppuluri, J. Nett, R. Rajendran, G. Ramage et al., Hsp90 governs dispersion and drug resistance of fungal biofilms, PLoS Pathog, vol.7, p.1002257, 2011.

S. Sánchez-gómez, R. Ferrer-espada, P. S. Stewart, B. Pitts, K. Lohner et al., Antimicrobial activity of synthetic cationic peptides and lipopeptides derived from human lactoferricin against Pseudomonas aeruginosa planktonic cultures and biofilms, BMC Microbiol, vol.15, p.137, 2015.

N. Q. Balaban, J. Merrin, R. Chait, L. Kowalik, and S. Leibler, Bacterial persistence as a phenotypic switch, Science, vol.305, pp.1622-1625, 2004.

J. M. Balwit, P. Van-langevelde, J. M. Vann, and R. A. Proctor, , 1994.

, Gentamicin-resistant menadione and hemin auxotrophic Staphylococcus aureus persist within cultured endothelial cells, J. Infect. Dis, vol.170, pp.1033-1037

S. L. Bateman and P. C. Seed, Epigenetic regulation of the nitrosative stress response and intracellular macrophage survival by extraintestinal pathogenic Escherichia coli, Mol. Microbiol, vol.83, pp.908-925, 2012.

S. Besier, A. Ludwig, K. Ohlsen, V. Brade, and T. A. Wichelhaus, Molecular analysis of the thymidine-auxotrophic small colony variant phenotype of Staphylococcus aureus, Int. J. Med. Microbiol, vol.297, pp.217-225, 2007.

J. Bielecki, P. Youngman, P. Connelly, and D. A. Portnoy, Bacillus subtilis expressing a haemolysin gene from Listeria monocytogenes can grow in mammalian cells, Nature, vol.345, pp.175-176, 1990.

I. Chatterjee, A. Kriegeskorte, A. Fischer, S. Deiwick, N. Theimann et al., In vivo mutations of thymidylate synthase (encoded by thyA) are responsible for thymidine dependency in clinical small-colony variants of Staphylococcus aureus, J. Bacteriol, vol.190, pp.834-842, 2008.

E. G. Christensen, L. Gram, and V. G. Kastbjerg, Sublethal triclosan exposure decreases susceptibility to gentamicin and other aminoglycosides in Listeria monocytogenes, Antimicrob. Agents Chemother, vol.55, pp.4064-4071, 2011.

C. Chuard, P. E. Vaudaux, R. A. Proctor, and D. P. Lew, Decreased susceptibility to antibiotic killing of a stable small colony variant of Staphylococcus aureus in fluid phase and on fibronectin-coated surfaces, J. Antimicrob. Chemother, vol.39, pp.603-608, 1997.

F. R. Cockerill, M. A. Wiker, J. Alder, M. N. Dudley, G. M. Eliopoulos et al., Methods for Dilution Antimicrobial Susceptibility Testing for Bacteria that Grow Aerobically, Approved Standard -9th Edn, vol.32, pp.18-20, 2012.

B. Dimitrijovski, S. O. Jensen, B. A. Espedido, and S. J. Van-hal, Tolerance" of Misused Terminology? Enforcing Standardized Phenotypic Definitions, MBio, vol.6, pp.446-461, 2015.

E. Drenkard and F. M. Ausubel, Pseudomonas biofilm formation and antibiotic resistance are linked to phenotypic variation, Nature, vol.416, pp.740-743, 2002.

A. M. Edwards, Phenotype switching is a natural consequence of Staphylococcus aureus replication, J. Bacteriol, vol.194, pp.5404-5412, 2012.

J. M. Farber and P. I. Peterkin, Listeria monocytogenes, a food-borne pathogen, Microbiol. Rev, vol.55, pp.476-511, 1991.

O. Fridman, A. Goldberg, I. Ronin, N. Shoresh, and N. Q. Balaban, Optimization of lag time underlies antibiotic tolerance in evolved bacterial populations, Nature, vol.513, pp.418-421, 2014.

L. G. Garcia, S. Lemaire, B. C. Kahl, K. Becker, R. A. Proctor et al., Pharmacodynamic evaluation of the activity of antibiotics against hemin-and menadione-dependent small-colony variants of Staphylococcus aureus in models of extracellular (broth) and intracellular (THP-1 monocytes) infections, Antimicrob. Agents Chemother, vol.56, pp.3700-3711, 2012.

L. G. Garcia, S. Lemaire, B. C. Kahl, K. Becker, R. A. Proctor et al., Antibiotic activity against small-colony variants of Staphylococcus aureus: review of in vitro, animal and clinical data, J. Antimicrob. Chemother, vol.68, pp.1455-1464, 2013.

N. Green, J. L. Burns, N. Mayer-hamblett, M. Kloster, L. C. Lands et al., Lack of association of small-colony-variant Staphylococcus aureus strains with long-term use of azithromycin in patients with cystic fibrosis, J. Clin. Microbiol, vol.49, pp.2772-2773, 2011.

, Frontiers in Microbiology | www.frontiersin.org, vol.7, 2016.

T. Hain, H. Hossain, S. S. Chatterjee, S. Machata, U. Volk et al., Temporal transcriptomic analysis of the Listeria monocytogenes EGD-e sigmaB regulon, BMC Microbiol, vol.8, p.20, 2008.

J. Hardy, P. Chu, and C. H. Contag, Foci of Listeria monocytogenes persist in the bone marrow, Dis. Mode. Mech, vol.2, pp.39-46, 2009.

S. Häussler, C. Lehmann, C. Breselge, M. Rohde, M. Classen et al., Fatal outcome of lung transplantation in cystic fibrosis patients due to small-colony variants of the Burkholderia cepacia complex, Eur. J. Clin. Microbiol. Infect. Dis, vol.22, pp.249-253, 2003.

S. Haussler, B. Tummler, H. Weissbrodt, M. Rohde, and I. Steinmetz, , 1999.

, Small-colony variants of Pseudomonas aeruginosa in cystic fibrosis, Clin. Infect. Dis, vol.29, pp.621-625

S. Helaine, A. M. Cheverton, K. G. Watson, L. M. Faure, S. A. Matthews et al., Internalization of Salmonella by macrophages induces formation of nonreplicating persisters, Science, vol.343, pp.204-208, 2014.

B. C. Kahl, K. Becker, and B. Löffler, Clinical significance and pathogenesis of Staphylococcal small colony variants in persistent infections, Clin. Microbiol. Rev, vol.29, pp.401-427, 2016.

B. C. Kahl, A. Duebbers, G. Lubritz, J. Haeberle, H. G. Koch et al., Population dynamics of persistent Staphylococcus aureus isolated from the airways of cystic fibrosis patients during a 6-year prospective study, J. Clin. Microbiol, vol.41, pp.4424-4427, 2003.

V. G. Kastbjerg, L. Hein-kristensen, and L. Gram, Triclosaninduced aminoglycoside-tolerant Listeria monocytogenes isolates can appear as small-colony variants, Antimicrob. Agents Chemother, vol.58, pp.3124-3132, 2014.

P. Kleemann, E. Domann, T. Chakraborty, I. Bernstein, and M. Lohoff, Chronic prosthetic joint infection caused by Listeria monocytogenes, J. Med. Microbiol, vol.58, pp.138-141, 2009.

G. M. Knudsen, Y. Ng, and L. Gram, Survival of bactericidal antibiotic treatment by a persister subpopulation of Listeria monocytogenes, Appl. Environ. Microbiol, vol.79, pp.7390-7397, 2013.

S. Lechner, K. Lewis, and R. Bertram, Staphylococcus aureus persisters tolerant to bactericidal antibiotics, J. Mol. Microbiol. Biotechnol, vol.22, pp.235-244, 2012.

K. Lewis, Persister cells, Annu. Rev. Microbiol, vol.64, pp.357-372, 2010.

E. Maisonneuve and K. Gerdes, Molecular mechanisms underlying bacterial persisters, Cell, vol.157, pp.539-548, 2014.

R. C. Massey, A. Buckling, and S. J. Peacock, Phenotypic switching of antibiotic resistance circumvents permanent costs in Staphylococcus aureus, Curr. Biol, vol.11, pp.1810-1814, 2001.

J. Mclauchlin, A. Audurier, and A. G. Taylor, Treatment failure and recurrent human listeriosis, J. Antimicrob. Chemother, vol.27, pp.851-857, 1991.

O. Mitjà, C. Pigrau, I. Ruiz, X. Vidal, B. Almirante et al., Predictors of mortality and impact of aminoglycosides on outcome in listeriosis in a retrospective cohort study, J. Antimicrob. Chemother, vol.64, pp.416-423, 2009.

M. A. Moors, B. Levitt, P. Youngman, and D. A. Portnoy, Expression of listeriolysin O and ActA by intracellular and extracellular Listeria monocytogenes, Infect. Immun, vol.67, pp.131-139, 1999.

A. Morvan, C. Moubareck, A. Leclercq, M. Hervé-bazin, S. Bremont et al., Antimicrobial resistance of Listeria monocytogenes strains isolated from humans in France, Antimicrob. Agents Chemother, vol.54, pp.2728-2731, 2010.

J. T. Myers, A. W. Tsang, and J. A. Swanson, Localized reactive oxygen and nitrogen intermediates inhibit escape of Listeria monocytogenes from vacuoles in activated macrophages, J. Immunol, vol.171, pp.5447-5453, 2003.

E. Nagababu and J. M. Rifkind, Formation of fluorescent heme degradation products during the oxidation of hemoglobin by hydrogen peroxide, Biochem. Biophys. Res. Commun, vol.247, pp.592-596, 1998.

K. L. Painter, E. Strange, J. Parkhill, K. B. Bamford, D. Armstrong-james et al., Staphylococcus aureus adapts to oxidative stress by producing H2O2-resistant small-colony variants via the SOS response, Infect. Immun, vol.83, pp.1830-1844, 2015.

D. A. Portnoy, V. Auerbuch, and I. J. Glomski, The cell biology of Listeria monocytogenes infection: the intersection of bacterial pathogenesis and cell-mediated immunity, J. Cell Biol, vol.158, pp.409-414, 2002.

D. A. Portnoy, R. D. Schreiber, P. Connelly, and L. G. Tilney, Gamma interferon limits access of Listeria monocytogenes to the macrophage cytoplasm, J. Exp. Med, vol.170, pp.2141-2146, 1989.

R. A. Proctor, B. Kahl, C. Von-eiff, P. E. Vaudaux, D. P. Lew et al., Staphylococcal small colony variants have novel mechanisms for antibiotic resistance, Clin. Infect. Dis, vol.27, pp.68-74, 1998.

R. A. Proctor, A. Kriegeskorte, B. C. Kahl, K. Becker, B. Löffler et al., Staphylococcus aureus Small Colony Variants (SCVs): a road map for the metabolic pathways involved in persistent infections, Front. Cell. Infect. Microbiol, vol.4, p.99, 2014.

R. A. Proctor, P. Van-langevelde, M. Kristjansson, J. N. Maslow, and R. D. Arbeit, Persistent and relapsing infections associated with smallcolony variants of Staphylococcus aureus, Clin. Infect. Dis, vol.20, pp.95-102, 1995.

R. A. Proctor, C. Von-eiff, B. C. Kahl, K. Becker, P. Mcnamara et al., Small colony variants: a pathogenic form of bacteria that facilitates persistent and recurrent infections, Nat. Rev. Microbiol, vol.4, pp.295-305, 2006.

A. Roggenkamp, A. Sing, M. Hornef, U. Brunner, I. B. Autenrieth et al., Chronic prosthetic hip infection caused by a smallcolony variant of Escherichia coli, J. Clin. Microbiol, vol.36, pp.2530-2534, 1998.

B. D. Sauders, M. Wiedmann, M. Desjardins, C. Fenlon, N. Davenport et al., Recurrent Listeria monocytogenes infection: relapse or reinfection with a unique strain confirmed by molecular subtyping, Clin. Infect. Dis, vol.33, pp.257-259, 2001.

A. W. Segal, How neutrophils kill microbes, Annu. Rev. Immunol, vol.23, pp.197-223, 2005.

H. Seifert, C. Von-eiff, and G. Fätkenheuer, Fatal case due to methicillinresistant Staphylococcus aureus small colony variants in an AIDS patient, Emerg. Infect. Dis, vol.5, pp.450-453, 1999.

P. Sendi and R. A. Proctor, Staphylococcus aureus as an intracellular pathogen: the role of small colony variants, Trends Microbiol, vol.17, pp.54-58, 2009.

L. M. Shaughnessy and J. A. Swanson, The role of the activated macrophage in clearing Listeria monocytogenes infection, Front. Biosci, vol.12, pp.2683-2692, 2007.

A. M. Sousa, I. Machado, and M. O. Pereira, Phenotypic switching: an opportunity to bacteria thrive, Science against Microbial Pathogens: Communicating Current Research and Technological Advances, pp.252-262, 2012.

M. E. Temple and M. C. Nahata, Treatment of listeriosis, Ann. Pharmacother, vol.34, pp.656-661, 2000.

L. Tuchscherr, E. Medina, M. Hussain, W. Völker, V. Heitmann et al., Staphylococcus aureus phenotype switching: an effective bacterial strategy to escape host immune response and establish a chronic infection, EMBO Mol. Med, vol.3, pp.129-141, 2011.

S. Vijh and E. G. Pamer, Immunodominant and subdominant CTL responses to Listeria monocytogenes infection, J. Immunol, vol.158, pp.3366-3371, 1997.

C. Von-eiff, D. Bettin, R. A. Proctor, B. Rolauffs, N. Lindner et al., Recovery of small colony variants of Staphylococcus aureus following gentamicin bead placement for osteomyelitis, Clin. Infect. Dis, vol.25, pp.1250-1251, 1997.

B. Walloschke, H. Fuhrmann, and J. Schumann, Macrophage cell line RAW264.7 but not P-388D1 is an appropriate in vitro-model for studying oxidative burst as well as cytokine production in context of fatty acid enrichment, Cell. Immunol, vol.262, pp.58-61, 2010.

D. Winslow, J. Damme, and E. Dieckman, Delayed bactericidal activity of beta-lactam antibiotics against Listeria monocytogenes: antagonism of, 1983.

N. F. Alikhan, N. K. Petty, N. L. Ben-zakour, and S. A. Beatson, BLAST Ring Image Generator (BRIG): simple prokaryote genome comparisons, BMC Genomics, vol.12, p.402, 2011.

S. Anders and W. Huber, Differential expression analysis for sequence count data, Genome Biol, vol.11, p.106, 2010.

D. I. Andersson and D. Hughes, Antibiotic resistance and its cost: is it possible to reverse resistance?, Nat. Rev. Microbiol, vol.8, pp.260-271, 2010.

A. F. Barrios, R. J. Zuo, D. C. Ren, and T. K. Wood, Hha, YbaJ, and OmpA regulate Escherichia coli K12 biofilm formation and conjugation plasmids abolish motility, Biotechnol. Bioeng, vol.93, pp.188-200, 2006.

I. C. Blomfield, M. S. Mcclain, and B. I. Eisenstein, Type 1 fimbriae mutants of Escherichia coli K12: characterization of recognized afimbriate strains and construction of new fim deletion mutants, Mol. Microbiol, vol.5, pp.1439-1445, 1991.

W. Bokranz, X. Wang, H. Tschape, and U. Romling, Expression of cellulose and curli fimbriae by Escherichia coli isolated from the gastrointestinal tract, J. Med. Microbiol, vol.54, pp.1171-1182, 2005.

J. Bonnedahl, J. Hernandez, J. Stedt, J. Waldenstrom, B. Olsen et al., Extended-spectrum beta-lactamases in Escherichia coli and Klebsiella pneumoniae in Gulls, Emerg. Infect. Dis, vol.20, pp.897-899, 2014.

V. Calhau, G. Ribeiro, N. Mendonca, D. Silva, and G. J. , Prevalent combination of virulence and plasmidic-encoded, 2013.

, Escherichia coli strains. Virulence, vol.4, pp.726-729

J. R. Chambers and K. Sauer, Small RNAs and their role in biofilm formation, Trends Microbiol, vol.21, pp.39-49, 2013.

F. Chen, A. J. Mackey, C. J. Stoeckert, and D. S. Roos, OrthoMCL-DB: querying a comprehensive multi-species collection of ortholog groups, Nucleic Acids Res, vol.34, pp.363-368, 2006.

, Performance Standards for Antimicrobial Disk and Dilution Susceptibility Tests for Bacteria Isolated from Animals; Approved Standard, CLSI, 2008.

J. W. Dale and S. F. Park, Molecular Genetics of Bacteria, 2004.

N. A. Dasilva and J. E. Bailey, Theoretical growth-yield estimates for recombinant cells, Biotechnol. Bioeng, vol.28, pp.741-746, 1986.

O. Dudin, J. Geiselmann, H. Ogasawara, A. Ishihama, and S. Lacour, Repression of flagellar genes in exponential phase by CsgD and CpxR, two crucial modulators of Escherichia coli biofilm formation, J. Bacteriol, vol.196, pp.707-715, 2014.
URL : https://hal.archives-ouvertes.fr/hal-00926632

P. Dunn, SPSS survival manual: a step by step guide to data analysis using IBM SPSS, Aust. Nz. J. Publ. Heal, vol.37, pp.597-598, 2013.

C. Ewers, A. Bethe, I. Stamm, M. Grobbel, P. A. Kopp et al., CTX-M-15-D-ST648 Escherichia coli from companion animals and horses: another pandemic clone combining multiresistance and extraintestinal virulence?, J. Antimicrob. Chemother, vol.69, 2014.

C. Ewers, A. Bethe, T. Semmler, S. Guenther, and L. H. Wieler, Extendedspectrum beta-lactamase-producing and AmpC-producing Escherichia coli from livestock and companion animals, and their putative impact on public health: a global perspective, Clin. Microbiol. Infect, vol.18, pp.646-655, 2012.

C. Ewers, M. Grobbel, I. Stamm, P. A. Kopp, I. Diehl et al., Emergence of human pandemic O25:H4-ST131 CTX-M-15 extendedspectrum beta-lactamase-producing Escherichia coli among companion animals, J. Antimicrob. Chemother, vol.65, pp.651-660, 2010.

J. M. Ghigo, Natural conjugative plasmids induce bacterial biofilm development, Nature, vol.412, pp.442-445, 2001.

U. Gophna, M. Barlev, R. Seijffers, T. A. Oelschlager, J. Hacker et al., Curli fibers mediate internalization of Escherichia coli by eukaryotic cells, Infect. Immun, vol.69, pp.2659-2665, 2001.

A. M. Green and J. Sambrook, Molecular Cloning: A Labarotory Manual, Cold Springer Harbor, 2012.

M. Hammar, A. Arnqvist, Z. Bian, A. Olsen, and S. Normark, Expression of two csg operons is required for production of fibronectin-and congo redbinding curli polymers in Escherichia coli K-12, Mol. Microbiol, vol.18, pp.661-670, 1995.

R. M. Harshey, Bacterial motility on a surface: many ways to a common goal, Annu. Rev. Microbiol, vol.57, pp.249-273, 2003.

K. Hayashi, N. Morooka, Y. Yamamoto, K. Fujita, K. Isono et al., Highly accurate genome sequences of Escherichia coli K-12 strains MG1655 and W3110, Mol. Syst. Biol, vol.2, p.7, 2006.

A. Ito, A. Taniuchi, T. May, K. Kawata, and S. Okabe, Increased antibiotic resistance of Escherichia coli in mature biofilms, Appl. Environ. Microbiol, vol.75, pp.4093-4100, 2009.

K. G. Joensen, F. Scheutz, O. Lund, H. Hasman, R. S. Kaas et al., Real-time whole-genome sequencing for routine typing, surveillance, and outbreak detection of verotoxigenic Escherichia coli, J. Clin. Microbiol, vol.52, pp.1501-1510, 2014.

J. R. Johnson, B. Johnston, C. Clabots, M. A. Kuskowski, and M. Castanheira, Escherichia coli sequence type ST131 as the major cause of serious multidrug-resistant E. coli infections in the United States, Clin. Infect. Dis, vol.51, pp.286-294, 2010.

E. J. Kalivoda, K. M. Brothers, N. A. Stella, M. J. Schmitt, and R. M. Shanks, Bacterial cyclic AMP-phosphodiesterase activity coordinates biofilm formation, PLoS ONE, vol.8, p.71267, 2013.

M. Kearse, R. Moir, A. Wilson, S. Stones-havas, M. Cheung et al., Geneious basic: an integrated and extendable desktop software platform for the organization and analysis of sequence data, Bioinformatics, vol.28, pp.1647-1649, 2012.

D. Kim, G. Pertea, C. Trapnell, H. Pimentel, R. Kelley et al., TopHat2: accurate alignment of transcriptomes in the presence of insertions, deletions and gene fusions, Genome Biol, vol.14, p.36, 2013.

V. F. Lanza, M. De-toro, M. P. Garcillan-barcia, A. Mora, J. Blanco et al., Plasmid Flux in Escherichia coli ST131 sublineages, analyzed by plasmid constellation network (PLACNET), a new method for plasmid reconstruction from whole genome sequences, PLoS Genet, vol.10, p.1004766, 2014.

R. M. La-ragione, R. J. Collighan, and M. J. Woodward, Non-curliation of Escherichia coli O78:K80 isolates associated with IS1 insertion in csgB and reduced persistence in poultry infection, FEMS Microbiol. Lett, vol.175, pp.247-253, 1999.

I. E. Lehoux, M. J. Mazzulla, A. Baker, and C. M. Petit, Purification and characterization of YihA, an essential GTP-binding protein from Escherichia coli, Protein Expr. Purif, vol.30, pp.203-209, 2003.

R. E. Lenski, The cost of antibiotic resistance -from the perspective of a bacterium. antibiotic resistance: origins, evolution, selection and spread, CIBA Found. Symp, vol.207, pp.131-140, 1997.

B. Li and C. N. Dewey, RSEM: accurate transcript quantification from RNA-Seq data with or without a reference genome, BMC Bioinformatics, vol.12, p.323, 2011.

M. Martinez-medina, P. Naves, J. Blanco, X. Aldeguer, J. E. Blanco et al., Biofilm formation as a novel phenotypic feature of adherentinvasive Escherichia coli (AIEC), BMC Microbiol, vol.9, p.202, 2009.

T. May and S. Okabe, Escherichia coli harboring a natural IncF conjugative F plasmid develops complex mature biofilms by stimulating synthesis of colanic acid and Curli, J. Bacteriol, vol.190, pp.7479-7490, 2008.

U. Naseer and A. Sundsfjord, The CTX-M Conundrum: dissemination of plasmids and Escherichia coli clones, Microb. Drug Resist, vol.17, pp.83-97, 2011.

M. H. Nicolas-chanoine, X. Bertrand, and J. Y. Madec, Escherichia coli ST131, an intriguing clonal group, Clin. Microbiol. Rev, vol.27, pp.543-574, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01061609

M. H. Nicolas-chanoine, J. Blanco, V. Leflon-guibout, R. Demarty, M. P. Alonso et al., Intercontinental emergence of Escherichia coli clone O25:H4-ST131 producing CTX-M-15, J. Antimicrob. Chemother, vol.61, pp.273-281, 2008.
URL : https://hal.archives-ouvertes.fr/inserm-00258588

H. Ogasawara, K. Yamamoto, and A. Ishihama, Role of the biofilm master regulator CsgD in cross-regulation between biofilm formation and flagellar synthesis, J. Bacteriol, vol.193, pp.2587-2597, 2011.

A. B. Pardee, F. Jacob, and J. Monod, Genetic control and cytoplasmic expression of inducibility in the synthesis of beta-galactosidase by E. Coli, J. Mol. Biol, vol.1, pp.165-178, 1959.

E. Perez-rueda and J. Collado-vides, The repertoire of DNA-binding transcriptional regulators in Escherichia coli K-12, Nucleic. Acids. Res, vol.28, pp.1838-1847, 2000.

J. D. Pitout, Extraintestinal pathogenic Escherichia coli: a combination of virulence with antibiotic resistance, Front. Microbiol, vol.3, p.9, 2012.

A. Richter, Wachstumsverhalten, Motilität und Biofilm-Bildung der Escherichia coli K-12 Laborstämme W3110, MG1655 und MC4100, 2011.

A. M. Richter, T. L. Povolotsky, L. H. Wieler, and R. Hengge, Cyclic-di-GMP signalling and biofilm-related properties of the Shiga toxin-producing 2011 German outbreak Escherichia coli O104:H4, EMBO Mol. Med, vol.6, pp.1622-1637, 2014.

M. D. Robinson, D. J. Mccarthy, and G. K. Smyth, edgeR: a Bioconductor package for differential expression analysis of digital gene expression data, Bioinformatics, vol.26, pp.139-140, 2010.

U. Romling, Characterization of the rdar morphotype, a multicellular behaviour in Enterobacteriaceae, Cell. Mol. Life Sci, vol.62, pp.1234-1246, 2005.

P. Ross, R. Mayer, and M. Benziman, Cellulose biosynthesis and function in bacteria, Microbiol. Rev, vol.55, pp.35-58, 1991.

H. Sahly, S. Navon-venezia, L. Roesler, A. Hay, Y. Carmeli et al., Extended-spectrum beta-lactamase production is associated with an increase in cell invasion and expression of fimbrial adhesins in Klebsiella pneumoniae, Antimicrob. Agents Chemother, vol.52, pp.3029-3034, 2008.

K. Schaufler, L. H. Wieler, T. Semmler, C. Ewers, and S. Guenther, , 2013.

, ESBL-plasmids carrying toxin-antitoxin systems can be "cured" of wild-type Escherichia coli using a heat technique, Gut. Pathog, vol.5, p.34

P. Schierack, A. Romer, J. Jores, H. Kaspar, S. Guenther et al., Isolation and characterization of intestinal Escherichia coli clones from wild boars in Germany, Appl. Environ. Microbiol, vol.75, pp.695-702, 2009.

R. Schmieder, Y. W. Lim, and R. Edwards, Identification and removal of ribosomal RNA sequences from metatranscriptomes, Bioinformatics, vol.28, pp.433-435, 2012.

C. Seiler and T. U. Berendonk, Heavy metal driven co-selection of antibiotic resistance in soil and water bodies impacted by agriculture and aquaculture, Front. Microbiol, vol.3, p.399, 2012.

A. Smet, A. Martel, D. Persoons, J. Dewulf, M. Heyndrickx et al., Characterization of extended-spectrum beta-lactamases produced by Escherichia coli isolated from hospitalized and nonhospitalized patients: emergence of CTX-M-15-producing strains causing urinary tract infections. Microb, Drug Res, vol.16, pp.129-134, 2010.

A. Smet, F. Van-nieuwerburgh, T. T. Vandekerckhove, A. Martel, D. Deforce et al., Complete nucleotide sequence of CTX-M-15-Plasmids from clinical Escherichia coli isolates: insertional events of transposons and insertion sequences, PLoS ONE, vol.5, p.11202, 2010.

N. Smirnov, Table for estimating the goodness of fit of empirical distributions, Ann. Math. Stat, vol.19, pp.279-279, 1948.

M. B. Stead, A. Agrawal, K. E. Bowden, R. Nasir, B. K. Mohanty et al., RNAsnap (TM): a rapid, quantitative and inexpensive, method for isolating total RNA from bacteria, Nucleic Acids Res, vol.40, 2012.

C. Trapnell, D. G. Hendrickson, M. Sauvageau, L. Goff, J. L. Rinn et al., Differential analysis of gene regulation at transcript resolution with RNA-seq, Nat. Biotechnol, vol.31, pp.46-53, 2013.

L. A. Vaas, J. Sikorski, B. Hofner, A. Fiebig, N. Buddruhs et al., opm: an R package for analysing OmniLog (R) phenotype microarray data, Bioinformatics, vol.29, pp.1823-1824, 2013.

L. A. Vaas, J. Sikorski, V. Michael, M. Goker, and H. P. Klenk, Visualization and curve-parameter estimation strategies for efficient exploration of phenotype microarray kinetics, PLoS ONE, vol.7, p.34846, 2012.

V. Mentzer, A. Connor, T. R. Wieler, L. H. Semmler, T. Iguchi et al., Identification of enterotoxigenic Escherichia coli (ETEC) clades with long-term global distribution, Nat. Genet, vol.46, pp.1321-1326, 2014.

F. Wilcoxon, Individual comparisons by ranking methods, Biometrics Bull, vol.1, pp.80-83, 1945.

N. Woodford, J. F. Turton, and D. M. Livermore, Multiresistant Gram-negative bacteria: the role of high-risk clones in the dissemination of antibiotic resistance, FEMS Microbiol. Rev, vol.35, pp.736-755, 2011.

X. Yang, Q. Ma, and T. K. Wood, The R1 conjugative plasmid increases Escherichia coli biofilm formation through an envelope stress response, Appl. Environ. Microbiol, vol.74, pp.2690-2699, 2008.

E. Zankari, H. Hasman, S. Cosentino, M. Vestergaard, S. Rasmussen et al., Identification of acquired antimicrobial resistance genes, J. Antimicrob. Chemother, vol.67, pp.2640-2644, 2012.

K. Zhao, M. Liu, and R. R. Burgess, Adaptation in bacterial flagellar and motility systems: from regulon members to 'foraging'-like behavior in E. coli, Nucleic Acids Res, vol.35, pp.4441-4452, 2007.

X. Zogaj, M. Nimtz, M. Rohde, W. Bokranz, U. Romling et al., The multicellular morphotypes of Salmonella typhimurium and Escherichia coli produce cellulose as the second component of the extracellular matrix, Mol. Microbiol, vol.39, p.42973, 2001.

M. Agnello and A. Wong-beringer, The use of oligonucleotide recombination to generate isogenic mutants of clinical isolates of Pseudomonas aeruginosa, J. Microbiol. Methods, vol.98, pp.23-25, 2014.

M. Allewelt, F. T. Coleman, M. Grout, G. P. Priebe, and G. B. Pier, Acquisition of expression of the Pseudomonas aeruginosa ExoU cytotoxin leads to increased bacterial virulence in a murine model of acute pneumonia and systemic spread, Infect. Immun, vol.68, pp.3998-4004, 2000.

D. I. Andersson and D. Hughes, Antibiotic resistance and its cost: is it possible to reverse resistance?, Nat. Rev. Microbiol, vol.8, pp.260-271, 2010.

D. I. Andersson and D. Hughes, Microbiological effects of sublethal levels of antibiotics, Nat. Rev. Microbiol, vol.12, pp.465-478, 2014.

D. I. Andersson and B. R. Levin, The biological cost of antibiotic resistance, Curr. Opin. Microbiol, vol.2, pp.489-493, 1999.

L. Balsalobre and A. G. Campa, Fitness of Streptococcus pneumoniae fluoroquinolone-resistant strains with topoisomerase IV recombinant genes, Antimicrob. Agents Chemother, vol.52, pp.822-830, 2008.

F. Baquero and M. C. Negri, Selective compartments for resistant microorganisms in antibiotic gradients, Bioessays, vol.19, pp.731-736, 1997.

F. Baquero, M. C. Negri, M. I. Morosini, and J. Blázquez, , 1998.

, Antibiotic-selective environments, Clin. Infect. Dis, vol.27, pp.5-11

A. Beceiro, M. Tomás, and G. Bou, Antimicrobial resistance and virulence: a successful or deleterious association in the bacterial world?, Clin. Microbiol. Rev, vol.26, pp.185-230, 2013.

H. W. Boucher, G. H. Talbot, J. S. Bradley, J. E. Edwards, D. Gilbert et al., Bad bugs, no drugs: no ESKAPE! An update from the infectious diseases society of America, Clin. Infect. Dis, vol.48, pp.1-12, 2009.

, Antibiotic Resistance Threats in the United States, Centers for Disease Control, 2013.

K. H. Choi, J. B. Gaynor, K. G. White, C. Lopez, C. M. Bosio et al., A Tn7-based broad-range bacterial cloning and expression system, Nat. Methods, vol.2, pp.443-448, 2005.

K. H. Choi, A. Kumar, and H. P. Schweizer, A 10-min method for preparation of highly electrocompetent Pseudomonas aeruginosa cells: application for DNA fragment transfer between chromosomes and plasmid transformation, J. Microbiol. Methods, vol.64, pp.391-397, 2006.

K. H. Choi and H. P. Schweizer, mini-Tn7 insertion in bacteria with single attTn7 sites: example Pseudomonas aeruginosa, Nat. Protoc, vol.1, pp.153-161, 2006.

, Performance Standards for Antimicrobial Susceptibility Testing: 17th Informational Supplement, pp.100-117, 2007.

C. H. Corzett, M. F. Goodman, and S. E. Finkel, Competitive fitness during feast and famine: how SOS DNA polymerases influence physiology and evolution in Escherichia coli, Genetics, vol.194, pp.409-420, 2013.

A. A. El-solh, M. E. Akinnusi, J. P. Wiener-kronish, S. V. Lynch, L. A. Pineda et al., Persistent infection with Pseudomonas aeruginosa in ventilator-associated pneumonia, Am. J. Respir. Crit. Care Med, vol.178, pp.513-519, 2008.

H. Feltman, G. Schulert, S. Khan, M. Jain, L. Peterson et al., Prevalence of type III secretion genes in clinical and environmental isolates of Pseudomonas aeruginosa, Microbiology, vol.147, pp.2659-2669, 2001.

S. E. Finkel, Long-term survival during stationary phase: evolution and the GASP phenotype, Nat. Rev. Microbiol, vol.4, pp.113-120, 2006.

K. W. Garey, Q. P. Vo, M. T. Larocco, L. O. Gentry, and V. H. Tam, Prevalence of type III secretion protein exoenzymes and antimicrobial susceptibility patterns from bloodstream isolates of patients with Pseudomonas aeruginosa bacteremia, J. Chemother, vol.20, pp.714-720, 2008.

E. Gullberg, S. Cao, O. G. Berg, C. Ilbäck, L. Sandegren et al., Selection of resistant bacteria at very low antibiotic concentrations, PLoS Pathog, vol.7, p.1002158, 2011.

J. Hacker and E. Carniel, Ecological fitness, genomic islands and bacterial pathogenicity. a Darwinian view of the evolution of microbes, EMBO Rep, vol.2, pp.376-381, 2001.

E. M. Harrison, M. E. Carter, S. Luck, H. Y. Ou, X. He et al., Pathogenicity islands PAPI-1 and PAPI-2 contribute individually and synergistically to the virulence of Pseudomonas aeruginosa strain PA14, Infect. Immun, vol.78, pp.1437-1446, 2010.

A. R. Hauser, Pseudomonas aeruginosa virulence and antimicrobial resistance: two sides of the same coin?, Crit. Care Med, vol.42, pp.201-202, 2014.

P. G. Higgins, A. C. Fluit, D. Milatovic, J. Verhoef, and F. J. Schmitz, Mutations in GyrA, ParC, MexR and NfxB in clinical isolates of Pseudomonas aeruginosa, Int. J. Antimicrob. Agents, vol.21, issue.03, pp.9-17, 2003.

D. C. Hooper, Emerging mechanisms of fluoroquinolone resistance, Emerg. Infect. Dis, vol.7, pp.337-341, 2001.

D. I. Hsu, M. P. Okamoto, R. Murthy, and A. Wong-beringer, , 2005.

, Fluoroquinolone-resistant Pseudomonas aeruginosa: risk factors for acquisition and impact on outcomes, J. Antimicrob. Chemother, vol.55, pp.535-541

S. Jalal and B. Wretlind, Mechanisms of quinolone resistance in clinical strains of Pseudomonas aeruginosa, Microb. Drug Resist, vol.4, pp.257-261, 1998.

P. Komp-lindgren, L. L. Marcusson, D. Sandvang, N. Frimodt-møller, and D. Hughes, Biological cost of single and multiple norfloxacin resistance mutations in Escherichia coli implicated in urinary tract infections, Antimicrob. Agents Chemother, vol.49, pp.2343-2351, 2005.

A. M. Kraigsley and S. E. Finkel, Adaptive evolution in single species bacterial biofilms, FEMS Microbiol. Lett, vol.293, pp.135-140, 2009.

J. Kriengkauykiat, E. Porter, O. Lomovskaya, and A. Wong-beringer, Use of an efflux pump inhibitor to determine the prevalence of efflux pump-mediated fluoroquinolone resistance and multidrug resistance in Pseudomonas aeruginosa, Antimicrob. Agents Chemother, vol.49, pp.565-570, 2005.

E. Kugelberg, S. Löfmark, B. Wretlind, A. , and D. I. , Reduction of the fitness burden of quinolone resistance in Pseudomonas aeruginosa, J. Antimicrob. Chemother, vol.55, pp.22-30, 2005.

B. R. Kulasekara, H. D. Kulasekara, M. C. Wolfgang, L. Stevens, D. W. Frank et al., Acquisition and evolution of the exoU locus in Pseudomonas aeruginosa, J. Bacteriol, vol.188, pp.4037-4050, 2006.

A. N. Kunz, A. A. Begum, H. Wu, J. A. D'ambrozio, J. M. Robinson et al., Impact of fluoroquinolone resistance mutations on gonococcal fitness and in vivo selection for compensatory mutations, J. Infect. Dis, vol.205, pp.1821-1829, 2012.

K. Kurahashi, O. Kajikawa, T. Sawa, M. Ohara, M. A. Gropper et al., Pathogenesis of septic shock in Pseudomonas aeruginosa pneumonia, J. Clin. Invest, vol.104, pp.743-750, 1999.

C. Lakkis and S. M. Fleiszig, Resistance of Pseudomonas aeruginosa isolates to hydrogel contact lens disinfection correlates with cytotoxic activity, J. Clin. Microbiol, vol.39, pp.1477-1486, 2001.

D. G. Lee, J. M. Urbach, G. Wu, N. T. Liberati, R. L. Feinbaum et al., Genomic analysis reveals that Pseudomonas aeruginosa virulence is combinatorial, Genome Biol, vol.7, p.90, 2006.

J. K. Lee, Y. S. Lee, Y. K. Park, and B. S. Kim, Alterations in the GyrA and GyrB subunits of topoisomerase II and the ParC and ParE subunits of topoisomerase IV in ciprofloxacin-resistant clinical isolates of Pseudomonas aeruginosa, Int. J. Antimicrob. Agents, vol.25, pp.290-295, 2005.

J. A. Linder, E. S. Huang, M. A. Steinman, R. Gonzales, and R. S. Stafford, Fluoroquinolone prescribing in the United States, Am. J. Med, vol.118, pp.259-268, 1995.

N. Luo, S. Pereira, O. Sahin, J. Lin, S. Huang et al., Enhanced in vivo fitness of fluoroquinolone-resistant Campylobacter jejuni in the absence of antibiotic selection pressure, Proc. Natl. Acad. Sci. U.S.A, vol.102, pp.541-546, 2005.

M. Maatallah, J. Cheriaa, A. Backhrouf, A. Iversen, H. Grundmann et al., Population structure of Pseudomonas aeruginosa from five mediterranean countries: evidence for frequent recombination and epidemic occurrence of CC235, PLoS ONE, vol.6, p.25617, 2011.
URL : https://hal.archives-ouvertes.fr/hal-02648999

J. Machuca, A. Briales, G. Labrador, P. Díaz-de-alba, R. López-rojas et al., Interplay between plasmid-mediated and chromosomal-mediated fluoroquinolone resistance and bacterial fitness in Escherichia coli, J. Antimicrob. Chemother, vol.69, pp.3203-3215, 2014.

L. L. Marcusson, N. Frimodt-møller, and D. Hughes, Interplay in the selection of fluoroquinolone resistance and bacterial fitness, PLoS Pathog, vol.5, p.1000541, 2009.

A. H. Melnyk, A. Wong, and R. Kassen, The fitness costs of antibiotic resistance mutations, Evol. Appl, vol.8, pp.273-283, 2015.

D. T. Moir, M. Di, T. Opperman, H. P. Schweizer, and T. L. Bowlin, A high-throughput, homogeneous, bioluminescent assay for Pseudomonas aeruginosa gyrase inhibitors and other DNA-damaging agents, J. Biomol. Screen, vol.12, pp.855-864, 2007.

H. Mouneimné, J. Robert, V. Jarlier, and E. Cambau, Type II topoisomerase mutations in ciprofloxacin-resistant strains of Pseudomonas aeruginosa, Antimicrob. Agents Chemother, vol.43, pp.62-66, 1999.

M. Nakano, T. Deguchi, T. Kawamura, M. Yasuda, M. Kimura et al., Mutations in the gyrA and parC genes in fluoroquinolone-resistant clinical isolates of Pseudomonas aeruginosa, Antimicrob. Agents Chemother, vol.41, pp.2289-2291, 1997.

A. Oliver, R. Cantón, P. Campo, F. Baquero, and J. Blázquez, High frequency of hypermutable Pseudomonas aeruginosa in cystic fibrosis lung infection, Science, vol.288, pp.1251-1254, 2000.

E. A. Ozer, J. P. Allen, and A. R. Hauser, Characterization of the core and accessory genomes of Pseudomonas aeruginosa using bioinformatic tools Spine and AGEnt, BMC Genomics, vol.15, p.737, 2014.

C. Peña, G. Cabot, S. Gómez-zorrilla, L. Zamorano, A. Ocampo-sosa et al., Influence of virulence genotype and resistance profile in the mortality of Pseudomonas aeruginosa bloodstream infections, Clin. Infect. Dis, vol.60, pp.539-548, 2015.

A. A. Quartin, E. G. Scerpella, S. Puttagunta, and D. H. Kett, A comparison of microbiology and demographics among patients with healthcare-associated, hospital-acquired, and ventilator-associated pneumonia: a retrospective analysis of 1184 patients from a large, international study, BMC Infect. Dis, vol.13, p.561, 2013.

L. S. Redgrave, S. B. Sutton, M. A. Webber, and L. J. Piddock, Fluoroquinolone resistance: mechanisms, impact on bacteria, and role in evolutionary success, Trends Microbiol, vol.22, pp.438-445, 2014.

M. I. Restrepo, A. , and A. , The role of gram-negative bacteria in healthcare-associated pneumonia, Semin. Respir. Crit. Care Med, vol.30, pp.61-66, 2009.

V. D. Rosenthal, H. Bijie, D. G. Maki, Y. Mehta, A. Apisarnthanarak et al., International Nosocomial Infection Control Consortium (INICC) report, data summary of 36 countries, Am. J. Infect. Control, vol.40, pp.396-407, 2004.

A. Roy-burman, R. H. Savel, S. Racine, B. L. Swanson, N. S. Revadigar et al., Type III protein secretion is associated with death in lower respiratory and systemic Pseudomonas aeruginosa infections, J. Infect. Dis, vol.183, pp.1767-1774, 2001.

D. E. Rozen, L. Mcgee, B. R. Levin, and K. P. Klugman, Fitness costs of fluoroquinolone resistance in Streptococcus pneumoniae, Antimicrob. Agents Chemother, vol.51, pp.412-416, 2007.

H. Sato, D. W. Frank, C. J. Hillard, J. B. Feix, R. R. Pankhaniya et al., The mechanism of action of the Pseudomonas aeruginosa-encoded type III cytotoxin ExoU, EMBO J, vol.22, pp.2959-2969, 2003.

G. S. Schulert, H. Feltman, S. D. Rabin, C. G. Martin, S. E. Battle et al., Secretion of the toxin ExoU is a marker for highly virulent Pseudomonas aeruginosa isolates obtained from patients with hospital-acquired pneumonia, J. Infect. Dis, vol.188, pp.1695-1706, 2003.

C. M. Shaver and A. R. Hauser, Relative contributions of Pseudomonas aeruginosa ExoU, ExoS, and ExoT to virulence in the lung, Infect. Immun, vol.72, pp.6969-6977, 2004.

C. M. Shaver and A. R. Hauser, Interactions between effector proteins of the Pseudomonas aeruginosa type III secretion system do not significantly affect several measures of disease severity in mammals, Microbiology, vol.152, pp.143-152, 2006.

E. Sullivan, J. Bensman, M. Lou, M. Agnello, K. Shriner et al., Risk of developing pneumonia is enhanced by the combined traits of fluoroquinolone resistance and type III secretion virulence in respiratory isolates of Pseudomonas aeruginosa, Crit. Care Med, vol.42, pp.48-56, 2014.

B. Swingle, E. Markel, N. Costantino, M. G. Bubunenko, S. Cartinhour et al., Oligonucleotide recombination in Gram-negative bacteria, Mol. Microbiol, vol.75, pp.138-148, 2010.

J. L. Veesenmeyer, A. R. Hauser, T. Lisboa, and J. Rello, Pseudomonas aeruginosa virulence and therapy: evolving translational strategies, Crit. Care Med, vol.37, pp.1777-1786, 2009.

F. Wasels, S. A. Kuehne, S. T. Cartman, P. Spigaglia, F. Barbanti et al., Fluoroquinolone resistance does not impose a cost on the fitness of Clostridium difficile in vitro, Antimicrob. Agents Chemother, vol.59, pp.1794-1796, 2015.

G. L. Winsor, D. K. Lam, L. Fleming, R. Lo, M. D. Whiteside et al., Pseudomonas Genome Database: improved comparative analysis and population genomics capability for Pseudomonas genomes, Nucleic Acids Res, vol.39, 2011.

A. Wong-beringer, J. Wiener-kronish, S. Lynch, and J. Flanagan, Comparison of type III secretion system virulence among fluoroquinolonesusceptible and -resistant clinical isolates of Pseudomonas aeruginosa, Clin. Microbiol. Infect, vol.14, pp.330-336, 2008.

J. Zhang, Y. Chu, P. Wang, X. Ji, X. Li et al., Clinical outcomes of multidrug resistant Pseudomonas aeruginosa infection and the relationship with type III secretion system in patients with diabetic foot, Int. J. Low. Extrem. Wounds, vol.13, pp.205-210, 2014.

C. Abril, I. Brodard, and V. Perreten, Two novel antibiotic resistance genes, tet(44) and ant(6)-Ib, are located within a transferable pathogenicity island in Campylobacter fetus subsp. fetus, Antimicrob. Agents Chemother, vol.54, pp.3052-3055, 2010.

I. H. Ahmed, G. Manning, T. M. Wassenaar, S. Cawthraw, and D. G. Newell, Identification of genetic differences between two Campylobacter jejuni strains with different colonization potentials, Microbiology, vol.148, pp.1203-1212, 2002.

B. M. Allos, Campylobacter jejuni infections: update on emerging issues and trends, Clin. Infect. Dis, vol.32, pp.1201-1206, 2001.

Y. A. Almofti, M. Dai, Y. Sun, H. Haihong, and Z. Yuan, Impact of erythromycin resistance on the virulence properties and fitness of Campylobacter jejuni, Microb. Pathog, vol.50, pp.336-342, 2011.

Y. A. Almofti, M. Dai, Y. Sun, H. Hao, Z. Liu et al., The physiologic and phenotypic alterations due to macrolide exposure in Campylobacter jejuni, Int. J. Food Microbiol, vol.151, pp.52-61, 2011.

S. C. Andrews, A. K. Robinson, and F. Rodríguez-quiñones, Bacterial iron homeostasis, FEMS Microbiol. Rev, vol.27, pp.215-237, 2003.

H. Asakura, M. Yamasaki, S. Yamamoto, and S. Igimi, Deletion of peb4 gene impairs cell adhesion and biofilm formation in Campylobacter jejuni, FEMS Microbiol. Lett, vol.275, pp.278-285, 2007.

S. Ashkenazi and T. G. Cleary, A method for detecting Shiga toxin and Shiga-like toxin-I in pure and mixed culture, J. Med. Microbiol, vol.32, pp.255-261, 1990.

L. Avrain, C. Vernozy-rozand, and I. Kempf, Evidence for natural horizontal transfer of tetO gene between Campylobacter jejuni strains in chickens, J. Appl. Microbiol, vol.97, pp.134-140, 2004.

D. J. Bacon, R. A. Alm, L. Hu, T. E. Hickey, C. P. Ewing et al., DNA sequence and mutational analyses of the pVir plasmid of Campylobacter jejuni 81-176, Infect. Immun, vol.70, pp.6242-6250, 2002.

D. J. Bacon, C. M. Szymanski, D. H. Burr, R. P. Silver, R. A. Alm et al., A phase-variable capsule is involved in virulence of Campylobacter jejuni 81-176, Mol. Microbiol, vol.40, pp.769-777, 2001.

L. Bagger-skjøt, D. Sandvang, N. Frimodt-møller, C. H. Lester, K. E. Olsen et al., Association between antimicrobial resistance and virulence genes in Escherichia coli obtained from blood and faeces. Scand, J. Infect. Dis, vol.39, pp.724-727, 2007.

R. Barrangou, C. Fremaux, H. Deveau, M. Richards, P. Boyaval et al., CRISPR provides acquired resistance against viruses in prokaryotes, Science, vol.315, pp.1709-1712, 2007.

R. E. Black, M. Levine, M. Clements, M. L. Hughes, T. P. Blaser et al., Experimental Campylobacter jejuni infection in humans, J. Infect. Dis, vol.157, pp.472-479, 1988.

X. Chen, G. W. Naren, C. M. Wu, Y. Wang, L. Dai et al., Prevalence and antimicrobial resistance of Campylobacter isolates in broilers from China, Vet. Microbiol, vol.144, pp.133-139, 2010.

Y. Chen, S. Mukherjee, M. Hoffmann, M. L. Kotewicz, S. Young et al., Whole-genome sequencing of gentamicin-resistant Campylobacter coli isolated from U.S. retail meats reveals novel plasmidmediated aminoglycoside resistance genes, Antimicrob. Agents Chemother, vol.57, pp.5398-5405, 2013.

. Clsi, Performance Standards for Antimicrobial Disk and Dilution Susceptibility Tests for Bacteria Isolated From Animals; Approved Standard-Third Edition, 2008.

S. J. Cordwell, A. C. Len, R. G. Touma, N. E. Scott, L. Falconer et al., Identification of membrane-associated proteins from Campylobacter jejuni strains using complementary proteomics technologies, Proteomics, vol.8, pp.122-139, 2008.

, DANMAP 2014 -Use of Antimicrobial Agents and Occurrence of Antimicrobial Resistance in Bacteria from Food Animals, Food and Humans in Denmark, DANMAP, 2014.

M. R. Evans, G. Northey, T. S. Sarvotham, A. L. Hopkins, C. J. Rigby et al., Risk factors for ciprofloxacin-resistant Campylobacter infection in Wales, J. Antimicrob. Chemother, vol.64, pp.424-427, 2009.

E. Faber, E. Gripp, S. Maurischat, B. Kaspers, K. Tedin et al., Novel immunomodulatory flagellin-like protein FlaC in Campylobacter jejuni and other campylobacterales, vol.2, p.1, 2015.

J. A. Fields and S. A. Thompson, Campylobacter jejuni CsrA mediates oxidative stress responses, biofilm formation, and host cell invasion, J. Bacteriol, vol.190, pp.3411-3416, 2008.

D. E. Fouts, E. F. Mongodin, R. E. Mandrell, W. G. Miller, D. A. Rasko et al., Major structural differences and novel potential virulence mechanisms from the genomes of multiple campylobacter species, PLoS Biol, vol.3, p.15, 2005.

H. Ghunaim, J. M. Behnke, I. Aigha, A. Sharma, S. H. Doiphode et al., Analysis of resistance to antimicrobials and presence of virulence/stress response genes in campylobacter isolates from patients with severe diarrhoea, PLoS ONE, vol.10, p.119268, 2015.

A. Gibreel, O. Sköld, and D. E. Taylor, Characterization of plasmidmediated aphA-3 kanamycin resistance in Campylobacter jejuni, Microb. Drug Resist, vol.10, pp.98-105, 2004.

R. L. Guerrant, C. A. Wanke, R. A. Pennie, L. J. Barrett, A. A. Lima et al., Production of a unique cytotoxin by Campylobacter jejuni, Infect. Immun, vol.55, pp.2526-2530, 1987.

P. Guerry and C. M. Szymanski, Campylobacter sugars sticking out, Trends Microbiol, vol.16, pp.428-435, 2008.

P. Guerry, C. M. Szymanski, M. M. Prendergast, T. E. Hickey, C. P. Ewing et al., Phase variation of Campylobacter jejuni 81-176 lipooligosaccharide affects ganglioside mimicry and invasiveness in vitro, Infect. Immun, vol.70, pp.787-793, 2002.

J. Han, Y. Wang, O. Sahin, Z. Shen, B. Guo et al., A fluoroquinolone resistance associated mutation in gyrA Affects DNA supercoiling in Campylobacter jejuni, Front. Cell. Infect. Microbiol, vol.2, p.21, 2012.

H. Hao, M. Dai, Y. Wang, D. Chen, and Z. Yuan, Quantification of mutated alleles of 23S rRNA in macrolide-resistant Campylobacter by TaqMan real-time polymerase chain reaction, Foodborne Pathog. Dis, vol.7, pp.43-49, 2010.

H. Hao, M. Dai, Y. Wang, D. Peng, Z. Liu et al., 23S rRNA mutation A2074C conferring high-level macrolide resistance and fitness cost in Campylobacter jejuni, Microb. Drug Resist, vol.15, pp.239-244, 2009.

H. Hao, J. Liu, X. Kuang, M. Dai, G. Cheng et al., Identification of Campylobacter jejuni and determination of point mutations associated with macrolide resistance using a multiplex TaqMan MGB real-time PCR, J. Appl. Microbiol, vol.118, pp.1418-1425, 2015.

H. Hao, Z. Yuan, Z. Shen, J. Han, O. Sahin et al., Mutational and transcriptomic changes involved in the development of macrolide resistance in Campylobacter jejuni, Antimicrob. Agents Chemother, vol.57, pp.1369-1378, 2013.

M. Helms, J. Simonsen, K. E. Olsen, and K. Mølbak, Adverse health events associated with antimicrobial drug resistance in Campylobacter species: a registry-based cohort study, J. Infect. Dis, vol.191, pp.1050-1055, 2005.

D. Hofreuter, J. Tsai, R. O. Watson, V. Novik, B. Altman et al., Unique features of a highly pathogenic Campylobacter jejuni strain, Infect. Immun, vol.74, pp.4694-4707, 2006.

N. M. Iovine, Resistance mechanisms in Campylobacter jejuni, Virulence, vol.4, pp.230-240, 2013.

N. M. Iovine, S. Pursnani, A. Voldman, G. Wasserman, M. J. Blaser et al., Reactive nitrogen species contribute to innate host defense against Campylobacter jejuni, Infect. Immun, vol.76, pp.986-993, 2008.

J. G. Johnson, S. Carpentier, R. R. Spurbeck, S. K. Sandhu, and V. J. Dirita, Genome sequences of Campylobacter jejuni 81-176 variants with enhanced fitness relative to the parental strain in the chicken gastrointestinal tract, Genome Announc, vol.2, pp.6-14, 2014.

J. D. Klena, C. T. Parker, K. Knibb, J. C. Ibbitt, P. M. Devane et al., Differentiation of Campylobacter coli, Campylobacter jejuni, Campylobacter lari, and Campylobacter upsaliensis by a multiplex PCR developed from the nucleotide sequence of the lipid A gene lpxA, J. Clin. Microbiol, vol.42, pp.5549-5557, 2004.

M. E. Konkel, S. G. Garvis, S. L. Tipton, D. E. Anderson, and W. Cieplak, Identification and molecular cloning of a gene encoding a fibronectin-binding protein (CadF) from Campylobacter jejuni, Mol. Microbiol, vol.24, pp.953-963, 1997.

J. A. Korlath, M. T. Osterholm, L. A. Judy, J. C. Forfang, R. et al., A point-source outbreak of campylobacteriosis associated with consumption of raw milk, J. Infect. Dis, vol.152, pp.592-596, 1985.

K. D. Krewulak and H. J. Vogel, TonB or not TonB: is that the question?, Biochem. Cell Biol, vol.89, pp.87-97, 2011.

L. Lapierre, M. A. Gatica, V. Riquelme, C. Vergara, J. M. Yañez et al., Characterization of antimicrobial susceptibility and its association with virulence genes related to adherence, invasion, and cytotoxicity in Campylobacter jejuni and Campylobacter coli isolates from animals, meat, and humans, Microb. Drug Resist, vol.22, pp.432-444, 2016.

R. Louwen, D. Horst-kreft, A. G. De-boer, L. Van-der-graaf, G. De-knegt et al., A novel link between Campylobacter jejuni bacteriophage defence, virulence and Guillain-Barre syndrome, Eur. J. Clin. Microbiol. Infect. Dis, vol.32, pp.207-226, 2013.

R. Louwen and P. Van-baarlen, Are bacteriophage defence and virulence two sides of the same coin in Campylobacter jejuni?, Biochem. Soc. Trans, vol.41, pp.1475-1481, 2013.

T. Luangtongkum, B. Jeon, J. Han, P. Plummer, C. M. Logue et al., Antibiotic resistance in Campylobacter: emergence, transmission and persistence, Future Microbiol, vol.4, pp.189-200, 2009.

N. Luo, S. Pereira, O. Sahin, J. Lin, S. Huang et al., Enhanced in vivo fitness of fluoroquinolone-resistant Campylobacter jejuni in the absence of antibiotic selection pressure, Proc. Natl. Acad. Sci. U.S.A, vol.102, pp.541-546, 2005.

L. A. Marraffini, CRISPR-Cas immunity against phages: its effects on the evolution and survival of bacterial pathogens, PLoS Pathog, vol.9, p.1003765, 2013.

L. L. Mcgowan-spicer, P. J. Fedorka-cray, J. G. Frye, R. J. Meinersmann, J. B. Barrett et al., Antimicrobial resistance and virulence of Enterococcus faecalis isolated from retail food, J. Food Prot, vol.71, pp.760-769, 2008.

M. K. Mclennan, D. D. Ringoir, E. Frirdich, S. L. Svensson, D. H. Wells et al., Campylobacter jejuni biofilms up-regulated in the absence of the stringent response utilize a calcofluor white-reactive polysaccharide, J. Bacteriol, vol.190, pp.1097-1107, 2008.

F. J. Mojica, C. Díez-villaseñor, J. García-martinez, and E. Soria, Intervening sequences of regularly spaced prokaryotic repeats derive from foreign genetic elements, J. Mol. Evol, vol.60, pp.174-182, 2005.

M. R. Monteville, J. E. Yoon, and M. E. Konkel, Maximal adherence and invasion of INT 407 cells by Campylobacter jejuni requires the CadF outer-membrane protein and microfilament reorganization, Microbiology, vol.149, pp.153-165, 2003.

, National Antimicrobial Resistance Mornitoring System, pp.2012-2013, 2015.

J. M. Nelson, K. E. Smith, D. J. Vugia, T. Rabatsky-ehr, S. D. Segler et al., Prolonged diarrhea due to ciprofloxacin-resistant campylobacter infection, J. Infect. Dis, vol.190, pp.1150-1157, 2004.

A. Padhi, S. K. Naik, S. Sengupta, G. Ganguli, and A. Sonawane, Expression of Mycobacterium tuberculosis NLPC/p60 family protein Rv0024 induce biofilm formation and resistance against cell wall acting antituberculosis drugs in Mycobacterium smegmatis. Microbes Infect, vol.18, pp.224-236, 2016.

J. Parkhill, B. W. Wren, K. Mungall, J. M. Ketley, C. Churcher et al., The genome sequence of the food-borne pathogen Campylobacter jejuni reveals hypervariable sequences, Nature, vol.403, pp.665-668, 2000.

F. Poly, D. Threadgill, and A. Stintzi, Identification of Campylobacter jejuni ATCC 43431-specific genes by whole microbial genome comparisons, J. Bacteriol, vol.186, pp.4781-4795, 2004.

M. Reuter, A. Mallett, B. M. Pearson, and A. H. Van-vliet, Biofilm formation by Campylobacter jejuni is increased under aerobic conditions, Appl. Environ. Microbiol, vol.76, pp.2122-2128, 2010.

V. Rivera-amill and M. E. Konkel, Secretion of Campylobacter jejuni Cia proteins is contact dependent, Adv. Exp. Med. Biol, vol.473, pp.225-229, 1999.

T. R. Sampson and D. S. Weiss, CRISPR-Cas systems: new players in gene regulation and bacterial physiology, Front. Cell. Infect. Microbiol, vol.4, p.37, 2014.

Y. Shimomura, K. Okumura, S. Y. Murayama, J. Yagi, K. Ubukata et al., Complete genome sequencing and analysis of a Lancefield group G Streptococcus dysgalactiae subsp. equisimilis strain causing streptococcal toxic shock syndrome (STSS), BMC Genomics, vol.12, p.17, 2011.

U. Stucki, J. Frey, J. Nicolet, and A. P. Burnens, Identification of Campylobacter jejuni on the basis of a species-specific gene that encodes a membrane protein, J. Clin. Microbiol, vol.33, pp.855-859, 1995.

S. Suerbaum, M. Lohrengel, A. Sonnevend, F. Ruberg, and M. Kist, Allelic diversity and recombination in Campylobacter jejuni, J. Bacteriol, vol.183, pp.2553-2559, 2001.

M. Takamiya, A. Ozen, M. Rasmussen, T. Alter, T. Gilbert et al., Genome sequences of two stress-tolerant Campylobacter jejuni poultry strains, 305 and DFVF1099, J. Bacteriol, vol.193, pp.5546-5547, 2011.

D. R. Tribble, S. Baqar, D. A. Scott, M. L. Oplinger, F. Trespalacios et al., Assessment of the duration of protection in Campylobacter jejuni experimental infection in humans, Infect. Immun, vol.78, pp.1750-1759, 2010.

Y. Wang, Y. Dong, F. Deng, D. Liu, H. Yao et al., Species shift and multidrug resistance of Campylobacter from chicken and swine, China, 2008-14, J. Antimicrob. Chemother, vol.71, pp.666-669, 2016.

L. C. Antunes, R. B. Ferreira, M. M. Buckner, and B. B. Finlay, Quorum sensing in bacterial virulence, Microbiology, vol.156, pp.2271-2282, 2010.

N. Bhargava, P. Sharma, and N. Capalash, Quorum sensing in Acinetobacter: an emerging pathogen, Crit. Rev. Microbiol, vol.36, pp.349-360, 2010.

N. Bhargava, P. Sharma, and N. Capalash, Pyocyanin stimulates quorum sensing-mediated tolerance to oxidative stress and increases persister cell populations in Acinetobacter baumannii, Infect. Immun, vol.82, pp.3417-3425, 2014.

T. Bjarnsholt, P. Ø. Jensen, M. Burmølle, M. Hentzer, J. A. Haagensen et al., Pseudomonas aeruginosa tolerance to tobramycin, hydrogen peroxide and polymorphonuclear leukocytes is quorum-sensing dependent, Microbiology, vol.151, pp.373-383, 2005.

S. Bleves, C. Soscia, P. Nogueira-orlandi, A. Lazdunski, and A. Filloux, Quorum sensing negatively controls type III secretion regulon expression in Pseudomonas aeruginosa PAO1, J. Bacteriol, vol.187, pp.3898-3902, 2005.

S. Bleves, V. Viarre, R. Salacha, G. P. Michel, A. Filloux et al., Protein secretion systems in Pseudomonas aeruginosa: a wealth of pathogenic weapons, Int. J. Med. Microbiol, vol.300, pp.534-543, 2010.

M. T. Cabeen, Stationary phase-specific virulence factor overproduction by a lasR mutant of Pseudomonas aeruginosa, PLoS ONE, vol.9, p.88743, 2014.

I. Castillo-juárez, T. Maeda, E. A. Mandujano-tinoco, M. Tomas, B. Párez-eretza et al., Role of quorum sensing in bacterial infections, World J. Clin. Cases, vol.3, pp.575-598, 2015.

J. Choi, D. Shin, and S. Ryu, Implication of quorum sensing in Salmonella enterica serovar typhimurium virulence: the luxS gene is necessary for expression of genes in pathogenicity island 1, Infect. Immun, vol.75, pp.4885-4890, 2007.

L. D. Christensen, C. Moser, P. Ø. Jensen, T. B. Rasmussen, L. Christophersen et al., Impact of Pseudomonas aeruginosa quorum sensing on biofilm persistence in an in vivo intraperitoneal foreign-body infection model, Microbiology, vol.153, pp.2312-2320, 2007.

P. W. Davenport, J. L. Griffin, W. , and M. , Quorum sensing is accompanied by global metabolic changes in the opportunistic human pathogen Pseudomonas aeruginosa, J. Bacteriol, vol.197, pp.2072-2082, 2015.

T. Defoirdt, N. Boon, and P. Bossier, Can bacteria evolve resistance to quorum sensing disruption?, PLoS Pathog, vol.6, p.1000989, 2010.

V. Dekimpe and E. Deziel, Revisiting the quorum-sensing hierarchy in Pseudomonas aeruginosa: the transcriptional regulator RhlR regulates LasRspecific factors, Microbiology, vol.155, pp.712-723, 2009.
URL : https://hal.archives-ouvertes.fr/pasteur-00819943

M. M. De-oca-mejia, I. Castillo-juarez, M. Martínez-vázquez, M. Soto-hernandez, and R. García-contreras, Influence of quorum sensing in multiple phenotypes of the bacterial pathogen Chromobacterium violaceum, Pathog. Dis, vol.73, pp.1-4, 2015.

S. P. Diggle, A. S. Griffin, G. S. Campbell, and S. A. West, Cooperation and conflict in quorum-sensing bacterial populations, Nature, vol.450, pp.411-414, 2007.

L. Fenner, H. Richet, D. Raoult, L. Papazian, C. Martin et al., Are clinical isolates of Pseudomonas aeruginosa more virulent than hospital environmental isolates in amebal co-culture test?, Crit. Care Med, vol.34, pp.823-828, 2006.

R. García-contreras, T. Maeda, and T. K. Wood, Resistance to quorumquenching compounds, Appl. Environ. Microbiol, vol.79, pp.6840-6846, 2013.

R. García-contreras, T. Maeda, and T. K. Wood, Can resistance against quorum-sensing interference be selected?, ISME J, vol.10, pp.4-10, 2016.

R. García-contreras, M. Martinez-vazquez, N. Velazquez-guadarrama, A. G. Villegas-paneda, T. Hashimoto et al., Resistance to the quorum-quenching compounds brominated furanone C-30 and 5-fluorouracil in Pseudomonas aeruginosa clinical isolates, Pathog. Dis, vol.68, pp.8-11, 2013.

R. García-contreras, L. Nunez-lópez, R. Jasso-chávez, B. W. Kwan, J. A. Belmont et al., Quorum sensing enhancement of the stress response promotes resistance to quorum quenching and prevents social cheating, ISME J, vol.9, pp.115-125, 2015.

R. Garcia-contreras, B. Perez-eretza, R. Jasso-chavez, E. Lira-silva, J. A. Roldan-sanchez et al., High variability in quorum quenching and growth inhibition by furanone C-30 in Pseudomonas aeruginosa clinical isolates from cystic fibrosis patients, Pathog. Dis, vol.73, p.40, 2015.

M. V. Grosso-becerra, C. Santos-medellin, A. Gonzalez-valdez, J. L. Mendez, G. Delgado et al., Pseudomonas aeruginosa clinical and environmental isolates constitute a single population with high phenotypic diversity, BMC Genomics, vol.15, p.318, 2014.

C. Guilbault, Z. Saeed, G. P. Downey, and D. Radzioch, Cystic fibrosis mouse models, Am. J. Respir. Cell Mol. Biol, vol.36, pp.1-7, 2007.

D. J. Hassett, J. F. Ma, J. G. Elkins, T. R. Mcdermott, U. A. Ochsner et al., Quorum sensing in Pseudomonas aeruginosa controls expression of catalase and superoxide dismutase genes and mediates biofilm susceptibility to hydrogen peroxide, Mol. Microbiol, vol.34, pp.1082-1093, 1999.

A. R. Hauser, The type III secretion system of Pseudomonas aeruginosa: infection by injection, Nat. Rev. Microbiol, vol.7, pp.654-665, 2009.

R. Hazan, J. He, G. Xiao, V. Dekimpe, Y. Apidianakis et al., Homeostatic interplay between bacterial cell-cell signaling and iron in virulence, PLoS Pathog, vol.6, p.1000810, 2010.

M. Hentzer, H. Wu, J. B. Andersen, K. Riedel, T. B. Rasmussen et al., Attenuation of Pseudomonas aeruginosa virulence by quorum sensing inhibitors, EMBO J, vol.22, pp.3803-3815, 2003.

K. Heurlier, V. Dénervaud, M. Haenni, L. Guy, V. Krishnapillai et al., Quorum-sensing-negative (lasR) mutants of Pseudomonas aeruginosa avoid cell lysis and death, J. Bacteriol, vol.187, pp.4875-4883, 2005.

N. Hoffmann, B. Lee, M. Hentzer, T. B. Rasmussen, Z. Song et al., Azithromycin blocks quorum sensing and alginate polymer formation and increases the sensitivity to serum and stationary-growth-phase killing of Pseudomonas aeruginosa and attenuates chronic P. aeruginosa lung infection in Cftr, Antimicrob. Agents Chemother, vol.51, pp.3677-3687, 2007.

N. Hoffmann, T. B. Rasmussen, P. Ø. Jensen, C. Stub, M. Hentzer et al., Novel mouse model of chronic Pseudomonas aeruginosa lung infection mimicking cystic fibrosis, Infect. Immun, vol.73, pp.2504-2514, 2005.

T. H. Jakobsen, M. Van-gennip, R. K. Phipps, M. S. Shanmugham, L. D. Christensen et al., Ajoene, a sulfur-rich molecule from garlic, inhibits genes controlled by quorum sensing, Antimicrob. Agents Chemother, vol.56, pp.2314-2325, 2011.

P. N. Jimenez, G. Koch, J. A. Thompson, K. B. Xavier, R. H. Cool et al., The multiple signaling systems regulating virulence in Pseudomonas aeruginosa, Microbiol. Mol. Biol. Rev, vol.76, pp.46-65, 2012.

V. C. Kalia, T. K. Wood, and P. Kumar, Evolution of resistance to quorumsensing inhibitors, Microb. Ecol, vol.68, pp.13-23, 2013.

T. Kohler, G. G. Perron, A. Buckling, and C. Van-delden, Quorum sensing inhibition selects for virulence and cooperation in Pseudomonas aeruginosa, PLoS Pathog, vol.6, p.1000883, 2010.

W. Kong, H. Liang, L. Shen, and K. Duan, Regulation of type III secretion system by Rhl and PQS quorum sensing systems in Pseudomonas aeruginosa, 2009.

, Wei Sheng Wu Xue Bao, vol.49, pp.1158-1164

S. Koul, J. Prakash, A. Mishra, and V. C. Kalia, Potential emergence of multi-quorum sensing inhibitor resistant (MQSIR) bacteria, Indian J. Microbiol, vol.56, pp.1-18, 2016.

A. J. Laarman, B. W. Bardoel, M. Ruyken, J. Fernie, F. J. Milder et al., Pseudomonas aeruginosa alkaline protease blocks complement activation via the classical and lectin pathways, J. Immunol, vol.188, pp.386-393, 2013.

D. G. Lee, J. M. Urbach, G. Wu, N. T. Liberati, R. L. Feinbaum et al., Genomic analysis reveals that Pseudomonas aeruginosa virulence is combinatorial, Genome Biol, vol.7, p.90, 2006.

J. Lee and L. Zhang, The hierarchy quorum sensing network in Pseudomonas aeruginosa, Protein Cell, vol.6, pp.26-41, 2015.

B. Lesic, F. Lépine, E. Déziel, J. Zhang, Q. Zhang et al., Inhibitors of pathogen intercellular signals as selective anti-infective compounds, PLoS Pathog, vol.3, pp.1229-1239, 2007.

T. Maeda, R. García-contreras, M. Pu, L. Sheng, L. R. Garcia et al., Quorum quenching quandary: resistance to antivirulence compounds, ISME J, vol.6, pp.493-501, 2012.

D. Martinelli, G. Grossmann, U. Sequin, H. Brandl, and R. Bachofen, Effects of natural and chemically synthesized furanones on quorum sensing in Chromobacterium violaceum, BMC Microbiol, vol.4, p.25, 2004.

R. Mittal, S. Sharma, S. Chhibber, and K. Harjai, Iron dictates the virulence of Pseudomonas aeruginosa in urinary tract infections, J. Biomed. Sci, vol.15, pp.731-741, 2008.

C. T. O'loughlin, L. C. Miller, A. Siryaporn, K. Drescher, M. F. Semmelhack et al., A quorum-sensing inhibitor blocks Pseudomonas aeruginosa virulence and biofilm formation, Proc. Natl. Acad. Sci. U.S.A, vol.110, pp.17981-17986, 2013.

K. L. Palmer, L. M. Aye, and M. Whiteley, Nutritional cues control Pseudomonas aeruginosa multicellular behavior in cystic fibrosis sputum, J. Bacteriol, vol.189, pp.8079-8087, 2007.

N. J. Patel, O. Zaborina, L. Wu, Y. Wang, D. J. Wolfgeher et al., Recognition of intestinal epithelial HIF-1alpha activation by Pseudomonas aeruginosa, Am. J. Physiol. Gastrointest. Liver Physiol, vol.292, pp.134-142, 2007.

K. Poole, Pseudomonas aeruginosa: resistance to the max, Front. Microbiol, vol.2, p.65, 2011.

K. P. Rumbaugh, J. A. Griswold, and A. N. Hamood, Contribution of the regulatory gene lasR to the pathogenesis of infection of burned mice, J. Burn Care Rehabil, vol.20, pp.42-49, 1999.

K. P. Rumbaugh, J. A. Griswold, B. H. Iglewski, and A. N. Hamood, Contribution of quorum sensing to the virulence of Pseudomonas aeruginosa in burn wound infections, Infect. Immun, vol.67, pp.5854-5862, 1999.

L. Saiman, B. C. Marshall, N. Mayer-hamblett, J. L. Burns, A. L. Quittner et al., Azithromycin in patients with cystic fibrosis chronically infected with Pseudomonas aeruginosa: a randomized controlled trial, JAMA, vol.290, pp.1749-1756, 2003.

T. G. Sana, A. Hachani, I. Bucior, C. Soscia, S. Garvis et al., The second type VI secretion system of Pseudomonas aeruginosa strain PAO1 is regulated by quorum sensing and Fur and modulates internalization in epithelial cells, J. Biol. Chem, vol.287, pp.27095-27105, 2012.
URL : https://hal.archives-ouvertes.fr/hal-01458258

K. M. Sandoz, S. M. Mitzimberg, and M. Schuster, Social cheating in Pseudomonas aeruginosa quorum sensing, Proc. Natl. Acad. Sci. U.S.A, vol.104, pp.15876-15881, 2007.

S. Sarkisova, M. A. Patrauchan, D. Berglund, D. E. Nivens, and M. J. Franklin, Calcium-induced virulence factors associated with the extracellular matrix of mucoid Pseudomonas aeruginosa biofilms, J. Bacteriol, vol.187, pp.4327-4337, 2005.

M. Schuster, C. P. Lostroh, T. Ogi, and E. P. Greenberg, Identification, timing, and signal specificity of Pseudomonas aeruginosa quorumcontrolled genes: a transcriptome analysis, J. Bacteriol, vol.185, pp.2066-2079, 2003.

L. Sheng, M. Pu, M. Hegde, Y. Zhang, A. Jayaraman et al., Interkingdom adenosine signal reduces Pseudomonas aeruginosa pathogenicity, Microb. Biotechnol, vol.5, pp.1460-1465, 2003.

P. A. Sokol and D. E. Woods, Relationship of iron and extracellular virulence factors to Pseudomonas aeruginosa lung infections, J. Med. Microbiol, vol.18, pp.125-133, 1984.

V. Sperandio, C. C. Li, and J. B. Kaper, Quorum-sensing Escherichia coli regulator A: a regulator of the LysR family involved in the regulation of the locus of enterocyte effacement pathogenicity island in enterohemorrhagic E. coli, Infect. Immun, vol.70, pp.3085-3093, 2002.

C. K. Stover, X. Q. Pham, A. L. Erwin, S. D. Mizoguchi, P. Warrener et al., Complete genome sequence of Pseudomonas aeruginosa PAO1, an opportunistic pathogen, Nature, vol.406, pp.959-964, 2000.

M. Tomás, M. Doumith, M. Warner, J. F. Turton, A. Beceiro et al., Efflux pumps, OprD porin, AmpC beta-lactamase, and multiresistance in Pseudomonas aeruginosa isolates from cystic fibrosis patients, Antimicrob. Agents Chemother, vol.54, pp.2219-2224, 2010.

V. E. Wagner, D. Bushnell, L. Passador, A. I. Brooks, and B. H. Iglewski, Microarray analysis of Pseudomonas aeruginosa quorum-sensing regulons: effects of growth phase and environment, J. Bacteriol, vol.185, pp.2080-2095, 2003.

M. A. Welsh, N. R. Eibergen, J. D. Moore, and H. E. Blackwell, , 2015.

, Small molecule disruption of quorum sensing cross-regulation in Pseudomonas aeruginosa causes major and unexpected alterations to virulence phenotypes, J. Am. Chem. Soc, vol.137, pp.1510-1519

B. Wretlind and O. R. Pavlovskis, Pseudomonas aeruginosa elastase and its role in pseudomonas infections, Rev. Infect. Dis, vol.5, pp.998-1004, 1983.

H. Wu, Z. Song, M. Hentzer, J. B. Andersen, S. Molin et al., Synthetic furanones inhibit quorum-sensing and enhance bacterial clearance in Pseudomonas aeruginosa lung infection in mice, J. Antimicrob. Chemother, vol.53, pp.1054-1061, 2004.

Q. Yang and T. Defoirdt, Quorum sensing positively regulates flagellar motility in pathogenic Vibrio harveyi, Environ. Microbiol, vol.17, pp.960-968, 2015.

A. Zaborin, K. Romanowski, S. Gerdes, C. Holbrook, F. Lepine et al., Red death in Caenorhabditis elegans caused by Pseudomonas aeruginosa PAO1, Proc. Natl. Acad. Sci. U.S.A, vol.106, pp.6327-6332, 2009.
URL : https://hal.archives-ouvertes.fr/pasteur-00819625

J. Zhu, M. B. Miller, R. E. Vance, M. Dziejman, B. L. Bassler et al., Quorum-sensing regulators control virulence gene expression in Vibrio cholerae, Proc. Natl. Acad. Sci. U.S.A, vol.99, pp.3129-3134, 2002.

. Saiman, The macrolide antibiotic azithromycin (AZM) provides a paradigmatic example of an unconventional antibacterial drug for P. aeruginosa treatment. Although, P. aeruginosa is highly resistance to macrolides owning to its low outer membrane permeability and the resistance-nodulation-cell division (RND) systems, AZM treatment benefits patients suffering from both intermittent and chronic P. aeruginosa infections, 2003.

. Morita, AZM has been shown to have immunomodulatory activity, which attenuates the inflammatory response and promotes macrophage phagocytic activity, 2004.

. Molinari, And sub-inhibitory concentrations of AZM suppress biofilm formation, motility, and production of multiple virulence factors, including proteases, pyocyanin, exotoxin A, phospholipase C (PLC), exopolysaccharides, and other quorum-sensing (QS) regulated genes in P. aeruginosa, 1992.

. Tateda, , 2001.

. Köhler, The AZM-mediated killing of stationary-phase bacterial cells and reduced expression of QS-regulated virulence factors require interaction between AZM and ribosome

. Lovmar, The effects of AZM on P. aeruginosa can be counteracted by over expression of ErmBP or a peptidyl-tRNA hydrolase, which blocks the interaction between AZM and ribosome by modifying the 23S rRNA or increases the intracellular aminoacyl-tRNA level, respectively, AZM binds in the nascent peptide exit tunnel (NPET), resulting in ribosome stalling and depletion of the intracellular pools of aminoacyl-tRNAs, 2004.

. However and . Cordin, In addition, the DExD/H box helicases have been shown to participate in bacterial responses to various stresses, such as cold shock, pH, osmotic, and oxidative stresses (Owttrim, 2013). And several DEAD family RNA helicases, which belong to a specific subfamily of DExD/H box helicases, have been shown to regulate virulence factors in Escherichia coli, Borrelia burgdorferi, 2004.

. Salman-dilgimen, , 2011.

. Bareclev, The pleiotropic functions of DExD/H box family RNA helicases intrigued us to suspect that they might be involved in the bacterial response to AZM treatment. In this study, we found that deficiency in a DEAH box helicase, PA3297, renders P. aeruginosa more susceptible to the killing and virulence suppression by AZM. Our results suggest that the expression of PA3297 was up regulated in the presence of AZM, which might promote 23S rRNA maturation to counteract the inhibitory effect of AZM on protein elongation, MATERIALS AND METHODS Strains and Plasmids The bacterial strains and plasmids used in this study are listed in Table 1, 1983.

S. Choi and . Liberati, Table 2), respectively. Deletion of the PA3297 gene was confirmed by PCR with primers PA14-PA3297-FF and PA14-PA3297-FR (Table 2). For the complementation of PA3297, the PA3297 gene was amplified from the PA14 chromosome by PCR with the primers PA14-PA3297-FF and PA14-PA3297-FR (Table 2). The PCR product was ligated into the EcoRI-SacI sites of pUC18t-mini-Tn7T-Gm, resulting in pTH1502. The plasmid was introduced into the PA3297 mutant by electroporation, along with the helper plasmid pTNS3, The E. coli strains DH5?, S17-1 and P. aeruginosa strains were routinely cultured in Luria-Bertani (LB) broth at 37 ? C. Antibiotics were used at the following concentrations: for E. coli, ampicillin 100 µg/ml, 1998.

C. Alvarez-ortega and C. S. Harwood, Responses of Pseudomonas aeruginosa to low oxygen indicate that growth in the cystic fibrosis lung is by aerobic respiration, Mol. Microbiol, vol.65, pp.153-165, 2007.

R. I. Aminov, Biotic acts of antibiotics, Front. Microbiol, vol.4, p.241, 2013.

G. G. Anderson, S. Moreau-marquis, B. A. Stanton, and G. A. Toole, In vitro analysis of tobramycin-treated Pseudomonas aeruginosa biofilms on cystic fibrosis-derived airway epithelial cells, Infect. Immun, vol.76, pp.1423-1433, 2008.

C. Bareclev, K. Vaitkevicius, S. Netterling, J. , and J. , DExD-box RNA-helicases in Listeria monocytogenes are important for growth, ribosomal maturation, rRNA processing and virulence factor expression, RNA Biol, vol.11, pp.1458-1467, 2014.

P. Bielecki, U. Komor, A. Bielecka, M. Müsken, J. Pucha?ka et al., Ex vivo transcriptional profiling reveals a common set of genes important for the adaptation of Pseudomonas aeruginosa to chronically infected host sites, Environ. Microbiol, vol.15, pp.570-587, 2013.

N. Billings, M. R. Millan, M. Caldara, R. Rusconi, Y. Tarasova et al., The extracellular matrix component psl provides fast-acting antibiotic defense in Pseudomonas aeruginosa biofilms, PLoS Pathog, vol.9, p.1003526, 2013.

G. Bjerkan, E. Witso, and K. Bergh, Sonication is superior to scraping for retrieval of bacteria in biofilm on titanium and steel surfaces in vitro, Acta Orthop, vol.80, pp.245-250, 2009.

F. Blasi, D. Bonardi, S. Aliberti, P. Tarsia, M. Confalonieri et al., Long-term azithromycin use in patients with chronic obstructive pulmonary disease and tracheostomy, Pulm. Pharmacol. Ther, vol.23, pp.200-207, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00628366

E. B. Breidenstein, C. De-la-fuente-núñez, and R. E. Hancock, Pseudomonas aeruginosa: all roads lead to resistance, Trends Microbiol, vol.19, pp.419-426, 2011.

A. Brencic, K. A. Mcfarland, H. R. Mcmanus, S. Castang, I. Mogno et al., Th GacS/GacA signal transduction system of Pseudomonas aeruginosa acts exclusively through its control over the transcription of the RsmY and RsmZ regulatory small RNAs, Mol. Microbiol, vol.73, pp.434-445, 2009.

M. Campa, M. Bendinelli, and H. Friedman, Pseudomonas aeruginosa as an Opportunistic Pathogen, 2012.

K. Choi and H. P. Schweizer, Mini-Tn7 insertion in bacteria with single attTn7 sites: example Pseudomonas aeruginosa, Nat. Protoc, vol.1, pp.153-161, 2006.

S. Chugani and E. Greenberg, The influence of human respiratory epithelia on Pseudomonas aeruginosa gene expression, Microb. Pathog, vol.42, pp.29-35, 2007.

O. Cordin, J. Banroques, N. K. Tanner, and P. Linder, The DEADbox protein family of RNA helicases, Gene, vol.367, pp.17-37, 2006.
URL : https://hal.archives-ouvertes.fr/hal-00132162

S. De-bentzmann and P. Plésiat, The Pseudomonas aeruginosa opportunistic pathogen and human infections, Environ. Microbiol, vol.13, pp.1655-1665, 2011.

G. Doring, S. Conway, H. Heijerman, M. Hodson, N. Hoiby et al., Antibiotic therapy against Pseudomonas aeruginosa in cystic fibrosis: a European consensus, Eur. Respir. J, vol.16, pp.749-767, 2000.

D. Essar, L. Eberly, A. Hadero, C. , and I. , Identification and characterization of genes for a second anthranilate synthase in Pseudomonas aeruginosa: interchangeability of the two anthranilate synthases and evolutionary implications, J. Bacteriol, vol.172, pp.884-900, 1990.

S. Favre-bonté, T. Köhler, and C. Van-delden, Biofilm formation by Pseudomonas aeruginosa: role of the C4-HSL cell-to-cell signal and inhibition by azithromycin, J. Antimicrob. Chemother, vol.52, pp.598-604, 2003.

C. Fung, S. Naughton, L. Turnbull, P. Tingpej, B. Rose et al., Gene expression of Pseudomonas aeruginosa in a mucin-containing synthetic growth medium mimicking cystic fibrosis lung sputum, J. Med. Microbiol, vol.59, pp.1089-1100, 2010.

R. J. Gillis and B. H. Iglewski, Azithromycin retards Pseudomonas aeruginosa biofilm formation, J. Clin. Microbiol, vol.42, pp.5842-5845, 2004.

J. Gödeke, C. Pustelny, and S. Häussler, Recycling of peptidyl-tRNAs by peptidyl-tRNA hydrolase counteracts azithromycin-mediated effects on Pseudomonas aeruginosa, Antimicrob. Agents Chemother, vol.57, pp.1617-1624, 2013.

S. Guénard, C. Muller, L. Monlezun, P. Benas, I. Broutin et al., Multiple mutations lead to MexXY-OprM-dependent aminoglycoside resistance in clinical strains of Pseudomonas aeruginosa, Antimicrob. Agents Chemother, vol.58, pp.221-228, 2014.

A. R. Hauser, The type III secretion system of Pseudomonas aeruginosa: infection by injection, Nat. Rev. Microbiol, vol.7, pp.654-665, 2009.

T. T. Hoang, R. R. Karkhoff-schweizer, A. J. Kutchma, and H. P. Schweizer, A broad-host-range Flp-FRT recombination system for sitespecific excision of chromosomally-located DNA sequences: application for isolation of unmarked Pseudomonas aeruginosa mutants, Gene, vol.212, pp.77-86, 1998.

N. Høiby, B. Frederiksen, and T. Pressler, Eradication of early Pseudomonas aeruginosa infection, J. Cyst. Fibros, vol.4, pp.49-54, 2005.

Y. Imamura, Y. Higashiyama, K. Tomono, K. Izumikawa, K. Yanagihara et al., Azithromycin exhibits bactericidal effects on Pseudomonas aeruginosa through interaction with the outer membrane, 2005.

, Antimicrob. Agents Chemother, vol.49, pp.1377-1380

F. Imperi, L. Leoni, and P. Visca, Antivirulence activity of azithromycin in Pseudomonas aeruginosa, Front. Microbiol, vol.5, p.178, 2014.
URL : https://hal.archives-ouvertes.fr/pasteur-01181964

P. J. Intile, G. J. Balzer, M. C. Wolfgang, and T. L. Yahr, The RNA helicase DeaD stimulates ExsA translation To promote expression of the Pseudomonas aeruginosa type III secretion system, J. Bacteriol, vol.197, pp.2664-2674, 2015.

I. Iost, T. Bizebard, and M. Dreyfus, Functions of DEAD-box proteins in bacteria: current knowledge and pending questions, BBA-Gene Regul. Mech, vol.1829, pp.866-877, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00825585

J. T. Jo, F. S. Brinkman, and R. E. Hancock, Aminoglycoside efflux in Pseudomonas aeruginosa: involvement of novel outer membrane proteins, Antimicrob. Agents Chemother, vol.47, pp.1101-1111, 2003.

V. R. Kaberdin and U. Bläsi, Bacterial helicases in posttranscriptional control, BBA-Gene Regul. Mech, vol.1829, pp.878-883, 2013.

T. Kai, K. Tateda, S. Kimura, Y. Ishii, H. Ito et al., A low concentration of azithromycin inhibits the mRNA expression of N-acyl homoserine lactone synthesis enzymes, upstream of lasI or rhlI, in Pseudomonas aeruginosa, Pulm. Pharmacol. Ther, vol.22, pp.483-486, 2009.

E. Kipnis, T. Sawa, and J. Wiener-kronish, Targeting mechanisms of Pseudomonas aeruginosa pathogenesis, vol.36, pp.78-91, 2006.

T. Köhler, J. Dumas, and C. Van-delden, Ribosome protection prevents azithromycin-mediated quorum-sensing modulation and stationaryphase killing of Pseudomonas aeruginosa, Antimicrob. Agents Chemother, vol.51, pp.4243-4248, 2007.

J. T. Koo, J. Choe, and S. L. Moseley, HrpA, a DEAH-box RNA helicase, is involved in mRNA processing of a fimbrial operon in Escherichia coli, Mol. Microbiol, vol.52, pp.1813-1826, 2004.

M. Kurachi, Studies on the biosynthesis of pyocyanine. (II) : isolation and determination of pyocyanine, Bull. Inst. Chem. Res. Kyoto Univ, vol.36, pp.174-187, 1958.

C. H. Lau, .. Fraud, S. Jones, M. Peterson, S. N. Poole et al., Reduced expression of the rplU-rpmA ribosomal protein operon in mexXY-expressing pan-aminoglycoside-resistant mutants of Pseudomonas aeruginosa, Antimicrob. Agents Chemother, vol.56, pp.5171-5179, 2012.

M. G. Lawrence, L. Lindahl, and J. M. Zengel, Effects on translation pausing of alterations in protein and RNA components of the ribosome exit tunnel, J. Bacteriol, vol.190, pp.5862-5869, 2008.

R. Legssyer, F. Huaux, J. Lebacq, M. Delos, E. Marbaix et al., Azithromycin reduces spontaneous and induced inflammation in DeltaF508 cystic fibrosis mice, Respir. Res, vol.7, p.134, 2006.

J. Liao, M. J. Schurr, and K. Sauer, The MerR-Like regulator BrlR confers biofilm tolerance by activating multidrug efflux pumps in Pseudomonas aeruginosa biofilms, J. Bacteriol, vol.195, pp.3352-3363, 2013.

N. T. Liberati, J. M. Urbach, S. Miyata, D. G. Lee, E. Drenkard et al., An ordered, nonredundant library of Pseudomonas aeruginosa strain PA14 transposon insertion mutants, Proc. Natl. Acad. Sci. U.S.A, vol.103, pp.2833-2838, 2006.

P. Linder and F. V. Fuller-pace, Looking back on the birth of DEAD-box RNA helicases, BBA-Gene Regul. Mech, vol.1829, pp.750-755, 2013.

P. Linder, J. , and E. , From unwinding to clamping-the DEAD box RNA helicase family, Nat. Rev. Mol. Cell Biol, vol.12, pp.505-516, 2011.

P. D. Lister, D. J. Wolter, and N. D. Hanson, Antibacterialresistant Pseudomonas aeruginosa: clinical impact and complex regulation of chromosomally encoded resistance mechanisms, Clin. Microbiol. Rev, vol.22, pp.582-610, 2009.

Y. Liu, K. Chan, C. , and C. , Modulation of host biology by Pseudomonas aeruginosa quorum sensing signal molecules: messengers or traitors, Front. Microbiol, vol.6, p.1226, 2015.

D. López, H. Vlamakis, and R. Kolter, Biofilms. Cold Spring Harb. Perspect. Biol, vol.2, p.398, 2010.

M. Lovmar, T. Tenson, and M. Ehrenberg, Kinetics of macrolide action: the josamycin and erythromycin cases, J. Biol. Chem, vol.279, pp.53506-53515, 2004.

M. Lovmar, V. Vimberg, E. Lukk, K. Nilsson, T. Tenson et al., Cis-acting resistance peptides reveal dual ribosome inhibitory action of the macrolide josamycin, Biochimie, vol.91, pp.989-995, 2009.

G. Molinari, C. Guzman, A. Pesce, and G. Schito, Inhibition of Pseudomonas aeruginosa virulence factors by subinhibitory concentrations of azithromycin and other macrolide antibiotics, J. Antimicrob. Chemother, vol.31, pp.681-688, 1993.

G. Molinari, P. Paglia, and G. Schito, Inhibition of motility of Pseudomonas aeruginosa and Proteus mirabilis by subinhibitory concentrations of azithromycin, Eur. J. Clin. Microbiol. Infect. Dis, vol.11, pp.469-471, 1992.

Y. Morita, J. Tomida, and Y. Kawamura, Responses of Pseudomonas aeruginosa to antimicrobials, Front. Microbiol, vol.4, p.422, 2013.

Y. Nalca, L. Jansch, F. Bredenbruch, R. Geffers, J. Buer et al., Quorum-sensing antagonistic activities of azithromycin in Pseudomonas aeruginosa PAO1: a global approach, Antimicrob. Agents Chemother, vol.50, pp.1680-1688, 2006.

S. Oun, P. Redder, J. P. Didier, P. Francois, A. R. Corvaglia et al., The CshA DEAD-box RNA helicase is important for quorum sensing control in Staphylococcus aureus, RNA Biol, vol.10, pp.157-165, 2013.

G. W. Owttrim, RNA helicases: diverse roles in prokaryotic response to abiotic stress, RNA Biol, vol.10, pp.96-110, 2013.

I. Pérez-martínez and D. Haas, Azithromycin inhibits expression of the GacA-dependent small RNAs RsmY and RsmZ in Pseudomonas aeruginosa, Antimicrob. Agents Chemother, vol.55, pp.3399-3405, 2011.

K. Poole, Pseudomonas aeruginosa: resistance to the max, Front. Microbiol, vol.2, p.65, 2011.

A. Prud'homme-généreux, R. K. Beran, I. Iost, C. S. Ramey, G. A. Mackie et al., Physical and functional interactions among RNase E, polynucleotide phosphorylase and the cold-shock protein, CsdA: evidence for a cold shock degradosome, Mol. Microbiol, vol.54, pp.1409-1421, 2004.

A. A. Putnam, J. , and E. , DEAD-box helicases as integrators of RNA, nucleotide and protein binding, BBA-Gene Regul. Mech, vol.1829, pp.884-893, 2013.

H. R. Rabin, S. M. Butler, M. E. Wohl, D. E. Geller, A. A. Colin et al., Pulmonary exacerbations in cystic fibrosis, Pediatr. Pulmonol, vol.37, pp.400-406, 2004.

B. Rada and T. L. Leto, Pyocyanin effects on respiratory epithelium: relevance in Pseudomonas aeruginosa airway infections, Trends Microbiol, vol.21, pp.73-81, 2013.

R. T. Sadikot, T. S. Blackwell, J. W. Christman, and A. S. Prince, Pathogen-host interactions in Pseudomonas aeruginosa pneumonia, Am. J. Respir. Crit. Care Med, vol.171, pp.1209-1223, 2005.

L. Saiman, B. C. Marshall, N. Mayer-hamblett, J. L. Burns, A. L. Quittner et al., Azithromycin in patients with cystic fibrosis chronically infected with Pseudomonas aeruginosa: a randomized controlled trial, JAMA, vol.290, pp.1749-1756, 2003.

A. Salman-dilgimen, P. O. Hardy, A. R. Dresser, and G. Chaconas, HrpA, a DEAH-Box RNA helicase, is involved in global gene regulation in the lyme disease spirochete, PLoS ONE, vol.6, p.22168, 2011.

A. Salman-dilgimen, P. O. Hardy, J. D. Radolf, M. J. Caimano, and G. Chaconas, HrpA, an RNA helicase involved in RNA processing, is required for mouse infectivity and tick transmission of the lyme disease spirochete, PLoS Pathog, vol.9, p.1003841, 2013.

Z. Shajani, M. T. Sykes, and J. R. Williamson, Assembly of bacterial ribosomes, Annu. Rev. Biochem, vol.80, pp.501-526, 2011.

J. A. Silvers and W. S. Champney, Accumulation and turnover of 23S ribosomal RNA in azithromycin-inhibited ribonuclease mutant strains of Escherichia coli, Arch. Microbiol, vol.184, pp.66-77, 2005.

R. Simon, U. Priefer, and A. Puhler, A broad host range mobilization system for in vivo genetic engineering: transposon mutagenesis in Gramnegative bacteria, Nat. Biotechnol, vol.1, pp.784-791, 1983.

P. K. Singh, A. L. Schaefer, M. R. Parsek, T. O. Moninger, M. J. Welsh et al., Quorum-sensing signals indicate that cystic fibrosis lungs are infected with bacterial biofilms, Nature, vol.407, pp.762-764, 2000.

M. E. Skindersoe, M. Alhede, R. Phipps, L. Yang, P. O. Jensen et al., Effects of antibiotics on quorum sensing in Pseudomonas aeruginosa, Antimicrob. Agents Chemother, vol.52, pp.3648-3663, 2008.

M. S. Son, W. J. Matthews, Y. Kang, D. T. Nguyen, and T. T. Hoang, In vivo evidence of Pseudomonas aeruginosa nutrient acquisition and pathogenesis in the lungs of cystic fibrosis patients, Infect. Immun, vol.75, pp.5313-5324, 2007.

A. L. Starosta, V. V. Karpenko, A. V. Shishkina, A. Mikolajka, N. V. Sumbatyan et al., Interplay between the ribosomal tunnel, nascent chain, and macrolides influences drug inhibition, Chem. Biol, vol.17, pp.504-514, 2010.

H. C. Steel, A. J. Theron, R. Cockeran, R. Anderson, and C. Feldman, Pathogen-and host-directed anti-inflammatory activities of macrolide antibiotics, Mediators Inflamm, p.584262, 2012.

G. Steinkamp, S. Schmitt-grohe, G. Döring, D. Staab, D. Pfründer et al., Once-weekly azithromycin in cystic fibrosis with chronic Pseudomonas aeruginosa infection, Respir. Med, vol.102, pp.1643-1653, 2008.

N. K. Tanner and P. Linder, DExD/H box RNA helicases: from generic motors to specific dissociation functions, Mol. Cell, vol.8, pp.251-262, 2001.

K. Tateda, R. Comte, J. Pechere, T. Köhler, K. Yamaguchi et al., Azithromycin inhibits quorum sensing in Pseudomonas aeruginosa, Antimicrob. Agents Chemother, vol.45, pp.1930-1933, 2001.

T. Tenson, M. Lovmar, and M. Ehrenberg, The mechanism of action of macrolides, lincosamides and streptogramin B reveals the nascent peptide exit path in the ribosome, J. Mol. Biol, vol.330, issue.03, pp.662-666, 2003.

W. C. Tsai, M. B. Hershenson, Y. Zhou, and U. Sajjan, Azithromycin increases survival and reduces lung inflammation in cystic fibrosis mice, Inflamm. Res, vol.58, pp.491-501, 2009.

Q. Wei, S. Tarighi, A. Dötsch, S. Häussler, M. Müsken et al., Phenotypic and genome-wide analysis of an antibiotic-resistant small colony variant (SCV) of Pseudomonas aeruginosa, PLoS ONE, vol.6, p.29276, 2011.

D. N. Wilson, Ribosome-targeting antibiotics and mechanisms of bacterial resistance, Nat. Rev. Microbiol, vol.12, pp.35-48, 2014.

G. L. Winsor, E. J. Griffiths, R. Lo, B. K. Dhillon, J. A. Shay et al., Enhanced annotations and features for comparing thousands of Pseudomonas genomes in the Pseudomonas genome database, Nucleic Acids Res, vol.44, 2016.

G. L. Winsor, D. K. Lam, L. Fleming, R. Lo, M. D. Whiteside et al., Pseudomonas genome database: improved comparative analysis and population genomics capability for Pseudomonas genomes, Nucleic Acids Res, vol.39, 2011.

L. Zheng, U. Baumann, and J. Reymond, An efficient one-step sitedirected and site-saturation mutagenesis protocol, Nucleic Acids Res, vol.32, p.115, 2004.

A. Allam, L. Maigre, M. Alimi, R. Alves-de-sousa, A. Hessani et al., New peptides with metal binding abilities and their use as drug carriers, Bioconjug. Chem, vol.25, pp.1811-1819, 2014.

M. C. Berenbaum, A method for testing for synergy with any number of agents, J. Infect. Dis, vol.137, pp.122-130, 1978.

J. M. Blair, M. A. Webber, A. J. Baylay, D. O. Ogbolu, and L. J. Piddock, Molecular mechanisms of antibiotic resistance, Nat. Rev. Microbiol, vol.13, pp.42-51, 2015.

J. A. Bohnert, S. Schuster, W. V. Kern, T. Karcz, A. Olejarz et al., Novel piperazine arylideneimidazolones inhibit the AcrAB-TolC pump in Escherichia coli and simultaneously act as fluorescent membrane probes in a combined real-time influx and efflux assay, Antimicrob. Agents Chemother, vol.60, pp.1974-1983, 2016.

J. M. Bolla, S. Alibert-franco, J. Handzlik, J. Chevalier, A. Mahamoud et al., Strategies for bypassing the membrane barrier in multidrug resistant Gram-negative bacteria, FEBS Lett, vol.585, pp.1682-1690, 2011.
URL : https://hal.archives-ouvertes.fr/hal-01425039

J. Chen, X. Shang, F. Hu, X. Lao, X. Gao et al., ?-Lactamase inhibitors: an update, Mini Rev. Med. Chem, vol.13, pp.1846-1861, 2013.

R. Chollet, J. Chevalier, A. Bryskier, and J. M. Pagès, The AcrAB-TolC pump is involved in macrolide resistance but not in telithromycin efflux in Enterobacter aerogenes and Escherichia coli, Antimicrob. Agents Chemother, vol.48, pp.3621-3624, 2004.

I. Chopra, C. Schofield, M. Everett, A. O'neill, K. Miller et al., Treatment of health-care-associated infections caused by Gramnegative bacteria: a consensus statement, Lancet Infect. Dis, vol.8, pp.133-139, 2008.

B. Cinquin, L. Maigre, E. Pinet, J. Chevalier, R. A. Stavenger et al., Microspectrometric insights on the uptake of antibiotics at the single bacterial cell level, Sci Rep, vol.5, p.17968, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01831684

A. Davin-regli, J. M. Bolla, C. E. James, J. P. Lavigne, J. Chevalier et al., Membrane permeability and regulation of drug 'influx and efflux' in enterobacterial pathogens, Curr. Drug Targets, vol.9, pp.750-759, 2008.

A. Davin-regli, M. Masi, S. Bialek, M. H. Nicolas-chanoine, and J. Pagès, Antimicrobial resistance and drug efflux pumps in Enterobacter and Klebsiella, Efflux-Mediated Drug Resistance in Bacteria: Mechanisms, Regulation and Clinical Implications, 2016.

J. A. Delmar, C. C. Su, Y. , and E. W. , Bacterial multidrug efflux transporters, Annu. Rev. Biophys, vol.43, pp.93-117, 2014.

J. Dreier, R. , and P. , Interaction of antibacterial compounds with RND efflux pumps in Pseudomonas aeruginosa, Front Microbiol, vol.6, p.660, 2015.

D. Du, Z. Wang, N. R. James, J. E. Voss, E. Klimont et al., Structure of the AcrAB-TolC multidrug efflux pump, Nature, vol.509, pp.512-515, 2014.

, Terminology relating to methods for the determination of susceptibility of bacteria to antimicrobial agents, European Committee for Antimicrobial Susceptibility Testing (EUCAST) of the European Society of Clinical Microbiology and Infectious Diseases (ESCMID, vol.6, pp.503-508, 2000.

N. Fischer, M. Raunest, T. H. Schmidt, D. C. Koch, and C. Kandt, Efflux pump-mediated antibiotics resistance: insights from computational structural biology, Interdiscip. Sci, vol.6, pp.1-12, 2014.

T. N. Gandhi, D. D. Depestel, C. D. Collins, J. J. Nagel, and L. L. Washer, Managing antimicrobial resistance in intensive care units, Crit. Care Med, vol.38, pp.315-323, 2010.

D. Ghisalberti, M. Masi, J. M. Pagès, C. , and J. , Chloramphenicol and expression of multidrug efflux pump in Enterobacter aerogenes, Biochem. Biophys. Res. Commun, vol.328, pp.1113-1118, 2005.

J. Handzlik, A. J. Bojarski, G. Sata?a, M. Kubacka, B. Sadek et al., SAR-Studies on the importance of aromatic ring topologies in search for selective 5-HT7 receptor ligands among phenylpiperazine hydantoin derivatives, Eur. J. Med. Chem, vol.78, pp.324-339, 2014.

J. Handzlik, E. Szyma?ska, J. Chevalier, E. Otrebska, K. Kiec-kononowicz et al., Amine-alkyl derivatives of hydantoin: new tool to combat resistant bacteria, Eur. J. Med. Chem, vol.46, pp.5807-5816, 2011.
URL : https://hal.archives-ouvertes.fr/hal-01425032

D. Jones, News and analysis: the antibacterial lead discovery challenge, Nat. Rev. Drug Discov, vol.9, pp.751-752, 2010.

S. Ka??áková, L. Maigre, J. Chevalier, M. Réfrégiers, and J. M. Pagès, Antibiotic transport in resistant bacteria: synchrotron UV fluorescence microscopy to determine antibiotic accumulation with single cell resolution, PLoS ONE, vol.7, p.38624, 2012.

R. Laxminarayan, A. Duse, C. Wattal, A. K. Zaidi, H. F. Wertheim et al., Antibiotic resistance -the need for global solution, Lancet Infect. Dis, vol.13, issue.13, pp.70318-70327, 2008.

X. Z. Li, P. Plésiat, and H. Nikaido, The challenge of efflux-mediated antibiotic resistance in Gram-negative bacteria, Clin. Microbiol. Rev, vol.28, pp.337-418, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01695304

M. Malléa, J. Chevalier, C. Bornet, A. Eyraud, J. Pagès et al., Porin alteration and active efflux: two in vivo drug resistance strategies used by Enterobacter aerogenes, Microbiology, vol.144, pp.3003-3009, 1998.

A. Matys, S. Podlewska, K. Witek, J. Witek, A. J. Bojarski et al., Imidazolidine-4-one derivatives in the search for novel chemosensitizers of Staphylococcus aureus MRSA: synthesis, biological evaluation and molecular modeling studies, Eur. J. Med. Chem, vol.101, pp.313-325, 2015.

R. Misra, K. D. Morrison, H. J. Cho, and T. Khuu, Importance of real-time assays to distinguish multidrug efflux pump-inhibiting and outer membranedestabilizing activities in Escherichia coli, J. Bacteriol, vol.197, pp.2479-2488, 2015.

H. Nikaido and J. M. Pagès, Broad-specificity efflux pumps and their role in multidrug resistance of Gram-negative bacteria, FEMS Microbiol. Rev, vol.36, pp.340-363, 2012.

T. J. Opperman and S. T. Nguyen, Recent advances toward a molecular mechanism of efflux pump inhibition, Front Microbiol, vol.6, p.421, 2015.

J. M. Pagès, C. E. James, and M. Winterhalter, The porin and the permeating antibiotic: a selective diffusion barrier in Gram-negative bacteria, Nat. Rev. Microbiol, vol.6, pp.893-903, 2008.

N. Philippe, L. Maigre, S. Santini, E. Pinet, J. M. Claverie et al., In vivo evolution of bacterial resistance in two cases of Enterobacter aerogenes infections during treatment with imipenem, PLoS One, vol.10, p.138828, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01237665

E. Pradel and J. M. Pagès, The AcrAB-TolC efflux pump contributes to multidrug resistance in the nosocomial pathogen Enterobacter aerogenes, Antimicrob. Agents Chemother, vol.46, pp.2640-2643, 2002.

M. J. Pucci and K. Bush, Investigational antimicrobial agents of 2013, Clin. Microbiol. Rev, vol.26, pp.792-821, 2013.

P. Ruggerone, S. Murakami, K. M. Pos, and A. V. Vargiu, RND efflux pumps: structural information translated into function and inhibition mechanisms, Curr. Top. Med. Chem, vol.13, pp.3079-3100, 2013.

R. Schulz, A. V. Vargiu, F. Collu, U. Kleinekathoefer, R. et al., Functional rotation of the transporter AcrB: insights into drug extrusion from simulations, PLoS Comput. Biol, vol.6, p.1000806, 2010.

H. Venter, R. Mowla, T. Ohene-agyei, and S. Ma, RND-type drug efflux pumps from Gram-negative bacteria: molecular mechanism and inhibition, Front Microbiol, vol.6, p.377, 2015.

A. Yamaguchi, R. Nakashima, and K. Sakurai, Structural basis of RND-type multidrug exporters, Front Microbiol, vol.6, p.327, 2015.

X. Q. Yao, H. Kenzaki, S. Murakami, and S. Takada, Drug export and allosteric coupling in a multidrug transporter revealed by molecular simulations, Nat. Commun, vol.1, pp.1-8, 2010.