M. A. Sirard, Follicle environment and quality of in vitro matured oocytes, J Assist Reprod Genet, 2011.

R. Buccione, A. C. Schroeder, and J. J. Eppig, Interactions between somatic cells and germ cells throughout mammalian oogenesis, Biology of reproduction, vol.43, issue.4, pp.543-550, 1990.

E. Seli, C. Robert, and M. A. Sirard, OMICS in assisted reproduction: possibilities and pitfalls, vol.16, pp.513-543, 2010.

D. Cohen, J. A. Dickerson, C. D. Whitmore, E. H. Turner, M. M. Palcic et al., Chemical cytometry: fluorescence-based single-cell analysis, Annu Rev Anal Chem, vol.1, pp.165-90, 2008.

S. Hashimoto, K. Saeki, Y. Nagao, N. Minami, M. Yamada et al., Effects of cumulus cell density during in vitro maturation of the developmental competence of bovine oocytes, Theriogenology, vol.49, issue.8, pp.1451-63, 1998.

D. K. Lobb, S. R. Soliman, S. Daya, and E. V. Younglai, Steroidogenesis in luteinized granulosa cell cultures varies with follicular priming regimen, Hum Reprod, vol.13, issue.8, pp.2064-2071, 1998.

A. Gougeon, Regulation of ovarian follicular development in primates: facts and hypotheses, Endocrine reviews, vol.17, issue.2, pp.121-55, 1996.

D. Peddinti, E. Memili, and S. C. Burgess, Proteomics-based systems biology modeling of bovine germinal vesicle stage oocyte and cumulus cell interaction, PloS one, vol.5, issue.6, p.11240, 2010.

E. Memili, D. Peddinti, L. A. Shack, B. Nanduri, F. Mccarthy et al., Bovine germinal vesicle oocyte and cumulus cell proteomics, Reproduction, vol.133, issue.6, pp.1107-1127, 2007.

M. Bhojwani, E. Rudolph, W. Kanitz, H. Zuehlke, F. Schneider et al., Molecular analysis of maturation processes by protein and phosphoprotein profiling during in vitro maturation of bovine oocytes: a proteomic approach, Cloning and stem cells, vol.8, issue.4, pp.259-74, 2006.

A. Bettegowda, O. V. Patel, K. B. Lee, K. E. Park, M. Salem et al., Identification of novel bovine cumulus cell molecular markers predictive of oocyte competence: functional and diagnostic implications, Biology of reproduction, vol.79, issue.2, pp.301-310, 2008.

F. J. Berendt, T. Frohlich, P. Bolbrinker, M. Boelhauve, T. Gungor et al., Highly sensitive saturation labeling reveals changes in abundance of cell cycle-associated proteins and redox enzyme variants during oocyte maturation in vitro, Proteomics, vol.9, issue.3, pp.550-64, 2009.

L. Chen, L. Zhai, C. Qu, C. Zhang, S. Li et al., Comparative Proteomic Analysis of Buffalo Oocytes Matured in vitro Using iTRAQ Technique, Scientific reports, vol.6, p.31795, 2016.

Z. Ellederova, P. Halada, P. Man, M. Kubelka, J. Motlik et al., Protein patterns of pig oocytes during in vitro maturation, Biology of reproduction, vol.71, issue.5, pp.1533-1542, 2004.

M. D. Powell, G. Manandhar, L. Spate, M. Sutovsky, S. Zimmerman et al., Discovery of putative oocyte quality markers by comparative ExacTag proteomics, Proteomics. Clinical applications, vol.4, issue.3, pp.337-51, 2010.

J. Kim, J. S. Kim, Y. J. Jeon, D. W. Kim, T. H. Yang et al., Identification of maturation and protein synthesis related proteins from porcine oocytes during in vitro maturation, Proteome science, vol.9, p.28, 2011.

A. M. Vitale, M. E. Calvert, M. Mallavarapu, P. Yurttas, J. Perlin et al., Proteomic profiling of murine oocyte maturation, Molecular reproduction and development, vol.74, issue.5, pp.608-624, 2007.

, Version postprint Comment citer ce document

V. Labas, A. P. Teixeira-gomes, L. Bouguereau, A. Gargaros, L. Spina et al., Intact cell MALDI-TOF mass spectrometry on single bovine oocyte and follicular cells combined with top-down proteomics: A novel approach to characterise markers of oocyte maturation, Journal of Proteomics, vol.175, pp.56-74, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01605876

. A-c-c-e-p-t-e-d-m-a-n-u-s-c-r-i-p-t-35,

S. Wang, Z. Kou, Z. Jing, Y. Zhang, X. Guo et al., Proteome of mouse oocytes at different developmental stages, Proceedings of the National Academy of Sciences of the United States of America, vol.107, issue.41, pp.17639-17683, 2010.

S. Cao, X. Guo, Z. Zhou, and J. Sha, Comparative proteomic analysis of proteins involved in oocyte meiotic maturation in mice, Molecular reproduction and development, vol.79, issue.6, pp.413-435, 2012.

S. Hamamah, V. Matha, C. Berthenet, T. Anahory, V. Loup et al., Comparative protein expression profiling in human cumulus cells in relation to oocyte fertilization and ovarian stimulation protocol, Reproductive biomedicine online, vol.13, issue.6, pp.807-821, 2006.
URL : https://hal.archives-ouvertes.fr/hal-00121682

I. Virant-klun and J. Krijgsveld, Proteomes of animal oocytes: what can we learn for human oocytes in the in vitro fertilization programme?, BioMed research international 2014, p.856907, 2014.

S. Mcreynolds, M. Dzieciatkowska, B. R. Mccallie, S. D. Mitchell, J. Stevens et al., Impact of maternal aging on the molecular signature of human cumulus cells, Fertility and sterility, vol.98, issue.6, p.5, 2012.

C. S. Hughes, S. Foehr, D. A. Garfield, E. E. Furlong, L. M. Steinmetz et al., Ultrasensitive proteome analysis using paramagnetic bead technology, Molecular systems biology, vol.10, p.757, 2014.

I. Virant-klun, S. Leicht, C. Hughes, and J. Krijgsveld, Identification of Maturation-Specific Proteins by Single-Cell Proteomics of Human Oocytes, Molecular & cellular proteomics : MCP, vol.15, issue.8, pp.2616-2643, 2016.

M. A. Claydon, S. N. Davey, V. Edwards-jones, and D. B. Gordon, The rapid identification of intact microorganisms using mass spectrometry, Nature biotechnology, vol.14, issue.11, pp.1584-1590, 1996.

R. D. Holland, J. G. Wilkes, F. Rafii, J. B. Sutherland, C. C. Persons et al., Rapid identification of intact whole bacteria based on spectral patterns using matrixassisted laser desorption/ionization with time-of-flight mass spectrometry, Rapid communications in mass spectrometry : RCM, vol.10, issue.10, pp.1227-1259, 1996.

T. Krishnamurthy and P. L. Ross, Rapid identification of bacteria by direct matrix-assisted laser desorption/ionization mass spectrometric analysis of whole cells, Rapid communications in mass spectrometry, RCM, vol.10, issue.15, pp.1992-1998, 1996.

G. Vogel, A. Strauss, B. Jenni, D. Ziegler, E. Dumermuth et al., Development and validation of a protocol for cell line identification by MALDI-TOF MS, BMC proceedings, vol.5, issue.8, p.45, 2011.

A. Karger, B. Bettin, M. Lenk, and T. C. Mettenleiter, Rapid characterisation of cell cultures by matrix-assisted laser desorption/ionisation mass spectrometric typing, Journal of virological methods, vol.164, issue.1-2, pp.116-137, 2010.

X. Zhang, M. Scalf, T. W. Berggren, M. S. Westphall, and L. M. Smith, Identification of mammalian cell lines using MALDI-TOF and LC-ESI-MS/MS mass spectrometry, Journal of the American Society for Mass Spectrometry, vol.17, issue.4, pp.490-499, 2006.

R. Ouedraogo, C. Flaudrops, A. Ben-amara, C. Capo, D. Raoult et al., Global analysis of circulating immune cells by matrix-assisted laser desorption ionization time-offlight mass spectrometry, PloS one, vol.5, issue.10, p.13691, 2010.

J. Hanrieder, G. Wicher, J. Bergquist, M. Andersson, and A. , Fex-Svenningsen, MALDI mass spectrometry based molecular phenotyping of CNS glial cells for prediction in mammalian brain tissue, Analytical and bioanalytical chemistry, vol.401, issue.1, pp.135-182, 2011.

B. Munteanu, C. Von-reitzenstein, G. M. Hansch, B. Meyer, and C. Hopf, Sensitive, robust and automated protein analysis of cell differentiation and of primary human blood cells by intact cell MALDI mass spectrometry biotyping, Analytical and bioanalytical chemistry, vol.404, issue.8, pp.2277-86, 2012.

, Version postprint Comment citer ce document

V. Labas, A. P. Teixeira-gomes, L. Bouguereau, A. Gargaros, L. Spina et al., Intact cell MALDI-TOF mass spectrometry on single bovine oocyte and follicular cells combined with top-down proteomics: A novel approach to characterise markers of oocyte maturation, Journal of Proteomics, vol.175, pp.56-74, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01605876

. A-c-c-e-p-t-e-d-m-a-n-u-s-c-r-i-p-t-36,

R. Ouedraogo, A. Daumas, E. Ghigo, C. Capo, J. L. Mege et al., Whole-cell MALDI-TOF MS: a new tool to assess the multifaceted activation of macrophages, Journal of proteomics, vol.75, issue.18, pp.5523-5555, 2012.

L. F. Marvin-guy, P. Duncan, S. Wagniere, N. Antille, N. Porta et al., Rapid identification of differentiation markers from whole epithelial cells by matrix-assisted laser desorption/ionisation time-of-flight mass spectrometry and statistical analysis, Rapid communications in mass spectrometry, RCM, vol.22, issue.8, pp.1099-108, 2008.

S. L. Kober, H. Meyer-alert, D. Grienitz, H. Hollert, and M. Frohme, Intact cell mass spectrometry as a rapid and specific tool for the differentiation of toxic effects in cell-based ecotoxicological test systems, Analytical and bioanalytical chemistry, vol.407, issue.25, pp.7721-7752, 2015.

N. H. Chiu, Z. Jia, R. Diaz, and P. Wright, Rapid differentiation of in vitro cellular responses to toxic chemicals by using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry, Environmental toxicology and chemistry / SETAC, vol.34, issue.1, pp.161-167, 2015.

B. Munteanu, B. Meyer, C. Von-reitzenstein, E. Burgermeister, S. Bog et al.,

C. Ebert and . Hopf, Label-free in situ monitoring of histone deacetylase drug target engagement by matrix-assisted laser desorption ionization-mass spectrometry biotyping and imaging, Analytical chemistry, vol.86, issue.10, pp.4642-4649, 2014.

J. F. Povey, C. J. O'malley, T. Root, E. B. Martin, G. A. Montague et al., Rapid high-throughput characterisation, classification and selection of recombinant mammalian cell line phenotypes using intact cell MALDI-ToF mass spectrometry fingerprinting and PLS-DA modelling, Journal of biotechnology, vol.184, pp.84-93, 2014.

H. T. Feng, L. C. Sim, C. Wan, N. S. Wong, and Y. Yang, Rapid characterization of protein productivity and production stability of CHO cells by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry, Rapid communications in mass spectrometry, RCM, vol.25, issue.10, pp.1407-1419, 2011.

H. T. Feng, N. S. Wong, L. C. Sim, L. Wati, Y. Ho et al., Rapid characterization of high/low producer CHO cells using matrix-assisted laser desorption/ionization time-of-flight, Rapid communications in mass spectrometry : RCM, vol.24, issue.9, pp.1226-1256, 2010.

V. Labas, L. Spina, C. Belleannee, A. P. Teixeira-gomes, A. Gargaros et al.,

. Dacheux, Analysis of epididymal sperm maturation by MALDI profiling and top-down mass spectrometry, Journal of proteomics, vol.113, pp.226-269, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01129949

V. Labas, I. Grasseau, K. Cahier, A. Gargaros, G. Harichaux et al., Qualitative and quantitative peptidomic and proteomic approaches to phenotyping chicken semen, Journal of proteomics, vol.112, pp.313-348, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01129861

L. Soler, V. Labas, A. Thelie, I. Grasseau, A. P. Teixeira-gomes et al., Intact Cell MALDI-TOF MS on Sperm: A Molecular Test For Male Fertility Diagnosis, Molecular & cellular proteomics : MCP, vol.15, issue.6, pp.1998-2010, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01409330

N. L. Kelleher, From primary structure to function: biological insights from largemolecule mass spectra, Chemistry & biology, vol.7, issue.2, pp.37-45, 2000.

F. W. Mclafferty, E. K. Fridriksson, D. M. Horn, M. A. Lewis, and R. A. Zubarev, Techview: biochemistry. Biomolecule mass spectrometry, Science, vol.284, issue.5418, pp.1289-90, 1999.

N. L. Kelleher, Top-down proteomics, vol.76, pp.197-203, 2004.

J. F. Kellie, J. C. Tran, J. E. Lee, D. R. Ahlf, H. M. Thomas et al., The emerging process of Top Down mass spectrometry for protein analysis: biomarkers, protein-therapeutics, and achieving high throughput, Molecular bioSystems, vol.6, issue.9, pp.1532-1541, 2010.

S. Auclair, R. Uzbekov, S. Elis, L. Sanchez, I. Kireev et al., Absence of cumulus cells during in vitro maturation affects lipid metabolism in Version postprint Comment citer ce document

V. Labas, A. P. Teixeira-gomes, L. Bouguereau, A. Gargaros, L. Spina et al., Intact cell MALDI-TOF mass spectrometry on single bovine oocyte and follicular cells combined with top-down proteomics: A novel approach to characterise markers of oocyte maturation, Journal of Proteomics, vol.175, pp.56-74, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01605876

. A-c-c-e-p-t-e-d-m-a-n-u-s-c-r-i-p-t-37-bovine and . Oocytes, American journal of physiology. Endocrinology and metabolism, vol.304, issue.6, pp.599-613, 2013.

V. Labas, A. Teixeira-gomes, L. Bouguereau, A. Gargaros, L. Spina et al., Data on endogenous bovine follicular cells peptides and small proteins obtained through Top-down High Resolution Mass Spectrometry, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01607432

A. D. Catherman, K. R. Durbin, D. R. Ahlf, B. P. Early, R. T. Fellers et al., Large-scale top-down proteomics of the human proteome: membrane proteins, mitochondria, and senescence, Molecular & cellular proteomics : MCP, vol.12, issue.12, pp.3465-73, 2013.

J. A. Vizcaino, E. W. Deutsch, R. Wang, A. Csordas, F. Reisinger et al., ProteomeXchange provides globally coordinated proteomics data submission and dissemination, Nature biotechnology, vol.32, issue.3, pp.223-229, 2014.

J. A. Vizcaino, R. G. Cote, A. Csordas, J. A. Dianes, A. Fabregat et al., The PRoteomics IDEntifications (PRIDE) database and associated tools: status in 2013, vol.41, pp.1063-1072, 2013.

L. Sanchez-lazo, D. Brisard, S. Elis, V. Maillard, R. Uzbekov et al., Fatty acid synthesis and oxidation in cumulus cells support oocyte maturation in bovine, Molecular Endocrinology, vol.28, issue.9, pp.1502-1521, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01129856

D. R. Deutsch, T. Frohlich, K. A. Otte, A. Beck, F. A. Habermann et al., Stage-specific proteome signatures in early bovine embryo development, Journal of proteome research, vol.13, issue.10, pp.4363-76, 2014.

M. L. Hennet and C. M. Combelles, The antral follicle: a microenvironment for oocyte differentiation, The International journal of developmental biology, vol.56, pp.819-850, 2012.

M. A. Sirard, F. Richard, P. Blondin, and C. Robert, Contribution of the oocyte to embryo quality, Theriogenology, vol.65, issue.1, pp.126-162, 2006.

W. Tomek, H. Torner, and W. Kanitz, Comparative analysis of protein synthesis, transcription and cytoplasmic polyadenylation of mRNA during maturation of bovine oocytes in vitro, Reprod Domest Anim, vol.37, issue.2, pp.86-91, 2002.

J. M. Traverso, I. Donnay, and A. S. Lequarre, Effects of polyadenylation inhibition on meiosis progression in relation to the polyadenylation status of cyclins A2 and B1 during in vitro maturation of bovine oocytes, Molecular reproduction and development, vol.71, issue.1, pp.107-121, 2005.

C. Charlier, J. Montfort, O. Chabrol, D. Brisard, T. T. Nguyen et al., Oocyte-somatic cells interactions, lessons from evolution, BMC Genomics, vol.13, pp.1-18, 2012.
URL : https://hal.archives-ouvertes.fr/inria-00540830

V. Puard, T. Tranchant, V. Cadoret, C. Gauthier, E. Reiter et al., Semiquantitative measurement of specific proteins in human cumulus cells using reverse phase protein array, Reproductive biology and endocrinology : RB&E, vol.11, p.100, 2013.
URL : https://hal.archives-ouvertes.fr/hal-01129796

D. R. Khan, D. A. Landry, E. Fournier, C. Vigneault, P. Blondin et al., Transcriptome meta-analysis of three follicular compartments and its correlation with ovarian follicle maturity and oocyte developmental competence in cows, Physiological genomics, vol.48, issue.8, pp.633-676, 2016.

A. R. Krauchunas and M. F. Wolfner, Molecular changes during egg activation, Curr Top Dev Biol, vol.102, pp.267-92

V. Labas, A. P. Teixeira-gomes, L. Bouguereau, A. Gargaros, L. Spina et al., Intact cell MALDI-TOF mass spectrometry on single bovine oocyte and follicular cells combined with top-down proteomics: A novel approach to characterise markers of oocyte maturation, Journal of Proteomics, vol.175, pp.56-74, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01605876

. A-c-c-e-p-t-e-d-m-a-n-u-s-c-r-i-p-t-38,

C. Krischek and B. Meinecke, In vitro maturation of bovine oocytes requires polyadenylation of mRNAs coding proteins for chromatin condensation, spindle assembly, MPF and MAP kinase activation, Anim Reprod Sci, vol.73, issue.3-4, p.129, 2002.

M. L. Sutton-mcdowall, R. B. Gilchrist, and J. G. Thompson, The pivotal role of glucose metabolism in determining oocyte developmental competence, Reproduction, vol.139, issue.4, pp.685-95, 2010.

K. Dunning, D. L. Russell, and R. Robker, Lipids and oocyte developmental competence: the role of fatty acids and B-oxidation, 2014.

N. Songsasen, Energy metabolism regulating mammalian oocyte maturation, Meiosis -Molecular Mechanisms and Cytogenetic Diversity, pp.173-186, 2012.

T. Arnesen, Towards a functional understanding of protein N-terminal acetylation, PLoS biology, vol.9, issue.5, p.1001074, 2011.

C. S. Hwang, A. Shemorry, and A. Varshavsky, N-terminal acetylation of cellular proteins creates specific degradation signals, Science, vol.327, issue.5968, pp.973-980, 2010.

A. Varshavsky, Discovery of cellular regulation by protein degradation, The Journal of biological chemistry, vol.283, issue.50, pp.34469-89, 2008.

M. Debela, V. Magdolen, N. Schechter, M. Valachova, F. Lottspeich et al.,

W. Choe, P. Bode, and . Goettig, Specificity profiling of seven human tissue kallikreins reveals individual subsite preferences, The Journal of biological chemistry, vol.281, issue.35, pp.25678-88, 2006.

C. A. Borgono, I. P. Michael, and E. P. Diamandis, Human tissue kallikreins: physiologic roles and applications in cancer, Molecular cancer research : MCR, vol.2, issue.5, pp.257-80, 2004.

D. R. Mcilwain, T. Berger, and T. W. Mak, Caspase functions in cell death and disease, Cold Spring Harbor perspectives in biology, vol.5, issue.4, p.8656, 2013.

C. Pop and G. S. Salvesen, Human caspases: activation, specificity, and regulation, The Journal of biological chemistry, vol.284, issue.33, pp.21777-81, 2009.

Y. Q. Yuan, A. Van-soom, J. L. Leroy, J. Dewulf, A. Van-zeveren et al., Apoptosis in cumulus cells, but not in oocytes, may influence bovine embryonic developmental competence, Theriogenology, vol.63, issue.8, pp.2147-63, 2005.

B. Nicholas, R. Alberio, A. A. Fouladi-nashta, and R. Webb, Relationship between lowmolecular-weight insulin-like growth factor-binding proteins, caspase-3 activity, and oocyte quality, Biology of reproduction, vol.72, issue.4, pp.796-804, 2005.

R. C. Taylor, G. Brumatti, S. Ito, M. O. Hengartner, W. B. Derry et al., Establishing a blueprint for CED-3-dependent killing through identification of multiple substrates for this protease, The Journal of biological chemistry, vol.282, issue.20, pp.15011-15032, 2007.

A. U. Luthi and S. J. Martin, The CASBAH: a searchable database of caspase substrates, Cell death and differentiation, vol.14, issue.4, pp.641-50, 2007.

K. P. Letsas and M. Frangou-lazaridis, Surfing on prothymosin alpha proliferation and antiapoptotic properties, Neoplasma, vol.53, issue.2, pp.92-98, 2006.

Y. Shen, N. Tolic, T. Liu, R. Zhao, B. O. Petritis et al.,

S. O. Moore, F. J. Purvine, R. D. Esteva, and . Smith, Blood peptidome-degradome profile of breast cancer, PloS one, vol.5, issue.10, p.13133, 2010.

M. Salhab, P. Papillier, C. Perreau, C. Guyarder-joly, J. Dupont et al., Thymosins beta-4 and beta-10 are expressed in bovine ovarian follicles and upregulated in cumulus cells during meiotic maturation, Reproduction Fertility and Development, vol.22, issue.8, pp.1206-1221, 2010.
URL : https://hal.archives-ouvertes.fr/hal-01129459

L. Renault, Intrinsic, Functional, and Structural Properties of beta-Thymosins and beta-Thymosin/WH2 Domains in the Regulation and Coordination of Actin Self-Assembly Dynamics and Cytoskeleton Remodeling, Vitamins and hormones, vol.102, pp.25-54, 2016.

V. Labas, A. P. Teixeira-gomes, L. Bouguereau, A. Gargaros, L. Spina et al., Intact cell MALDI-TOF mass spectrometry on single bovine oocyte and follicular cells combined with top-down proteomics: A novel approach to characterise markers of oocyte maturation, Journal of Proteomics, vol.175, pp.56-74, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01605876

. A-c-c-e-p-t-e-d-m-a-n-u-s-c-r-i-p-t-39,

Y. J. Yi, E. Nagyova, G. Manandhar, R. Prochazka, M. Sutovsky et al., Proteolytic activity of the 26S proteasome is required for the meiotic resumption, germinal vesicle breakdown, and cumulus expansion of porcine cumulus-oocyte complexes matured in vitro, Biology of reproduction, vol.78, issue.1, pp.115-141, 2008.

K. Takahashi, T. Kotani, Y. Katsu, and M. Yamashita, Possible involvement of insulin-like growth factor 2 mRNA-binding protein 3 in zebrafish oocyte maturation as a novel cyclin B1 mRNA-binding protein that represses the translation in immature oocytes, Biochemical and biophysical research communications, vol.448, issue.1, pp.22-29, 2014.

J. T. Levesque and M. A. Sirard, Resumption of meiosis is initiated by the accumulation of cyclin B in bovine oocytes, Biology of reproduction, vol.55, issue.6, pp.1427-1463, 1996.

W. Mak, C. Fang, T. Holden, M. B. Dratver, and H. Lin, An Important Role of Pumilio 1 in Regulating the Development of the Mammalian Female Germline, Biology of reproduction, vol.94, issue.6, p.134, 2016.

S. Uzbekova, Y. Arlot-bonnemains, J. Dupont, R. Dalbies-tran, P. Papillier et al., Spatio-temporal expression patterns of aurora kinases a, B, and C and cytoplasmic polyadenylation-elementbinding protein in bovine oocytes during meiotic maturation, Biology of reproduction, vol.78, issue.2, pp.218-251, 2008.

J. H. Stack and J. W. Newport, Developmentally regulated activation of apoptosis early in Xenopus gastrulation results in cyclin A degradation during interphase of the cell cycle, Development, vol.124, issue.16, pp.3185-95, 1997.

S. Mahrus, J. C. Trinidad, D. T. Barkan, A. Sali, A. L. Burlingame et al., Global sequencing of proteolytic cleavage sites in apoptosis by specific labeling of protein N termini, Cell, vol.134, issue.5, pp.866-76, 2008.

H. M. Brown, M. R. Anastasi, L. A. Frank, K. L. Kind, D. Richani et al.,

R. B. Russell, J. G. Gilchrist, and . Thompson, Hemoglobin: a gas transport molecule that is hormonally regulated in the ovarian follicle in mice and humans, Biology of reproduction, vol.92, issue.1, p.26, 2015.

V. Labas, A. P. Teixeira-gomes, L. Bouguereau, A. Gargaros, L. Spina et al., Intact cell MALDI-TOF mass spectrometry on single bovine oocyte and follicular cells combined with top-down proteomics: A novel approach to characterise markers of oocyte maturation, Journal of Proteomics, vol.175, pp.56-74, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01605876