L. S. Huang and P. W. Sternberg, Genetic dissection of developmental pathways, WormBook, vol.14, pp.1-19, 2006.

H. Chen, G. Wang, R. Simha, C. Du, and C. Zeng, Boolean Models of Biological Processes Explain Cascade-Like Behavior, Scientific Reports, vol.7, 2016.

Y. Zhang, Q. Ouyang, and Z. Geng, Topological origin of global attractors in gene regulatory networks, Science China Physics, Mechanics & Astronomy, vol.58, pp.1-8, 2014.

A. Barabasi and Z. N. Oltvai, Network biology: understanding the cell's functional organization, Nat Rev Genet, vol.5, pp.101-113, 2004.

R. Milo, Network Motifs: Simple Building Blocks of Complex Networks, Science, vol.298, pp.824-827, 2002.

A. Barabasi and R. Albert, Emergence of scaling in random networks, Science, vol.286, pp.509-512, 1999.

R. Thomas and J. Richelle, Positive feedback loops and multistationarity, Discrete Applied Mathematics, vol.19, pp.381-396, 1988.

R. Thomas, D. Thieffry, and M. Kaufman, Dynamical behaviour of biological regulatory networks-I. Biological role of feedback loops and practical use of the concept of the loop-characteristic state, Bull Math Biol, vol.57, pp.247-276, 1995.

S. Kauffman, Metabolic stability and epigenesis in randomly constructed genetic nets, J Theor Biol, vol.22, pp.437-467, 1969.

C. Espinosa-soto, P. Padilla-longoria, and E. R. Alvarez-buylla, A gene regulatory network model for cell-fate determina-tion during arabidopsis thaliana flower development that is robust and recovers experimental gene expression profiles, The Plant Cell, vol.16, pp.2923-2939, 2004.

R. Albert and H. G. Othmer, The topology of the regulatory interactions predicts the expression pattern of the segment polarity genes in drosophila melanogaster, Journal ofTheoretical Biology, vol.223, pp.1-18, 2003.

E. H. Snoussi, Necessary conditions for multistationarity and stable periodicity, Journal of Biological Systems, vol.06, pp.3-9, 1998.

A. Richard and J. Comet, Necessary conditions for multistationarity in discrete dynamical systems, Discrete Applied Mathematics, vol.155, pp.2403-2413, 2007.
URL : https://hal.archives-ouvertes.fr/hal-00342169

J. Aracena, Maximum number of fixed points in regulatory boolean networks, Bulletin of Mathematical Biology, vol.70, pp.1398-1409, 2008.

J. L. Payne and A. Wagner, Function does not follow form in gene regulatory circuits, Scientific Reports, vol.5, 2015.

H. Phenix, T. Perkins, and M. Kasrn, Identifiability and inference of pathway motifs by epistasis analysis, Chaos, vol.3, p.15, 2013.

Y. D. Nochomovitz and H. Li, Highly designable phenotypes and mutational buffers emerge from a systematic mapping between network topology and dynamic output, Proc Natl Acad Sci, vol.103, pp.4180-4185, 2006.

F. P. Roth, H. D. Lipshitz, B. J. Andrews, and . Q&a, Epistasis. Journal of Biology, vol.8, p.35, 2009.

L. Avery and S. Wasserman, Ordering gene: function the interpretation of epistasis in regulatory hierarchies, Trends Genet, vol.8, pp.312-316, 1992.

W. Bateson, Mendel's Principles of Heredity, 1909.

E. Azpeitia, M. Benitez, P. Padilla-longoria, C. Espinosa-soto, and E. R. Alvarez-buylla, Dynamic network-based epistasis analysis: boolean examples, Frontiers in Plant Sciences, vol.15, p.92, 2010.

E. Azpeitia, N. Weinstein, M. Benitez, L. Mendoza, and E. R. Alvarez-buylla, Finding Missing Interactions of the Arabidopsis thaliana Root Stem Cell Niche Gene Regulatory Network, Frontiers in Plant Sciences, vol.4, p.110, 2013.

M. Benitez and E. R. Alvarez-buylla, Dynamic-module redundancy confers robustness to the gene regulatory network involved in hair patterning of Arabidopsis epidermis, Biosystems, vol.102, pp.11-15, 2010.

A. Martinez-antonio, S. C. Janga, and D. Thieffry, Functional organisation of Escherichia coli transcriptional regulatory network, Journal of Molecular Biology, vol.381, pp.238-247, 2008.

A. Naldi, D. Thieffry, and C. Chaouiya, Decision Diagrams for the Representation and Analysis of Logical Models of Genetic Networks, Computational Methods in Systems Biology. Lecture Notes in Computer Science, vol.4695, pp.233-247, 2007.

J. Comet, On circuit functionality in boolean networks, Bulletin of Mathematical Biology, vol.75, pp.906-919, 2013.
URL : https://hal.archives-ouvertes.fr/hal-01242396

E. Remy, P. Ruet, and D. Thieffry, Graphic requirements for multistability and attractive cycles in a boolean dynamical framework, Advances in Applied Mathematics, vol.41, pp.335-350, 2008.
URL : https://hal.archives-ouvertes.fr/hal-00692086

L. Raeymaekers, Dynamics of boolean networks controlled by biologically meaningful functions, Journal of Theoretical Biology, vol.218, pp.331-341, 2002.

D. Marbach, T. Schaffter, C. Mattiussi, and D. Floreano, Generating realistic in silico gene networks for performance assessment of reverse engineering methods, Journal of Computational Biology, vol.16, pp.229-239, 2009.

L. Rota and C. , A data-driven integrative model of sepal primordium polarity in arabidopsis, The Plant Cell, vol.23, pp.4318-4333, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00828854

Y. Kwon and K. Cho, Boolean Dynamics of Biological Networks with Multiple Coupled Feedback Loops, Biophysical Journal, vol.92, pp.2975-2981, 2007.

J. Macia, S. Widder, and R. Sole, Specialized or flexible feed-forward loop motifs: a question of topology, BMC Systems Biology, vol.3, pp.1-18, 2009.

E. Conrad, A. E. Mayo, A. J. Ninfa, and D. B. Forger, Rate constants rather than biochemical mechanism determine behaviour of genetic clocks, Journal of The Royal Society Interface, vol.5, pp.9-15, 2008.

P. J. Ingram, M. P. Stumpf, and J. Stark, Network motifs: structure does not determine function, BMC Genomics, vol.7, pp.71-2164, 2006.

B. Samuelsson and C. Troein, Superpolynomial Growth in the Number of Attractors in Kauffman Networks, Phys. Rev. Lett, vol.90, p.98701, 2003.

S. Ciliberti, O. C. Martin, and A. Wagner, Robustness can evolve gradually in complex regulatory networks with varying topology, PLoS Computational Biology, vol.23, 2007.
URL : https://hal.archives-ouvertes.fr/hal-00143879

D. A. Rosenblueth, S. Munoz, M. Carrillo, and E. Azpeitia, Inference of Boolean Networks from Gene Interaction Graphs Using a SAT Solver, In Algorithms for Computational Biology, pp.235-246, 2014.

, LM acknowledges the sabbatical scholarships from PASPA-DGAPA-UNAM and CONACYT 251420. NW gratefully acknowledges support from ABACUS, CONACYT grant EDOMEX-2011-C01-165873. MEMS is a doctoral student from Programa de Doctorado en Ciencias Biomédicas