K. M. Godfrey and D. J. Barker, Fetal nutrition and adult disease, Am. J. Clin. Nutr, vol.71, pp.1344-1352, 2000.

T. Roseboom, S. De-rooij, and R. Painter, The Dutch famine and its long-term consequences for adult health, Early Hum. Dev, vol.82, issue.8, pp.485-491, 2006.

L. C. Schulz, The Dutch Hunger Winter and the developmental origins of health and disease, Proc. Natl Acad. Sci. USA, vol.107, issue.39, pp.16757-16758, 2010.

I. Cetin, Placental transport of amino acids in normal and growth-restricted pregnancies, Eur. J. Obstet. Gynecol. Reprod. Biol, vol.110, pp.50-54, 2003.

T. R. Regnault, J. E. Friedman, R. B. Wilkening, R. V. Anthony, and W. W. Hay, Fetoplacental transport and utilization of amino acids in IUGR-a review, Placenta, vol.26, pp.52-62, 2005.

C. Junien and P. Nathanielsz, Report on the IASO Stock Conference 2006: early and lifelong environmental epigenomic programming of metabolic syndrome, obesity and type II diabetes, Obes. Rev, vol.8, issue.6, pp.487-502, 2007.

S. C. Langley-evans, Fetal programming of cardiovascular function through exposure to maternal undernutrition, Proc. Nutr. Soc, vol.60, issue.4, pp.505-513, 2001.

S. H. Zeisel, Epigenetic mechanisms for nutrition determinants of later health outcomes, Am. J. Clin. Nutr, vol.89, issue.5, pp.1488-1493, 2009.

M. H. Vickers, Developmental programming and transgenerational transmission of obesity, Ann. Nutr. Metab, vol.64, pp.26-34, 2014.

L. Attig, A. Gabory, and C. Junien, Early nutrition and epigenetic programming: chasing shadows, Curr. Opin. Clin. Nutr. Metab. Care, vol.13, issue.3, pp.284-293, 2010.

J. L. Gueant, R. Elakoum, and O. Ziegler, Nutritional models of foetal programming and nutrigenomic and epigenomic dysregulations of fatty acid metabolism in the liver and heart, Pflugers Arch, vol.466, issue.5, pp.833-850, 2013.
URL : https://hal.archives-ouvertes.fr/hal-01691184

S. Langley-evans, A. Swali, and S. Mcmullen, Early Life Nutrition, Adult Health, and Development: Lessons from Changing Dietary Patterns, Famines, and Experimental Studies, pp.253-280, 2013.

G. C. Burdge, S. P. Hoile, and K. A. Lillycrop, Epigenetics: are there implications for personalised nutrition?, Curr. Opin. Clin. Nutr. Metab. Care, vol.15, issue.5, pp.442-447, 2012.

G. Altobelli, I. G. Bogdarina, E. Stupka, A. J. Clark, and S. Langley-evans, Genome-wide methylation and gene expression changes in newborn rats following maternal protein restriction and reversal by folic acid, PLoS ONE, vol.8, issue.12, p.82989, 2013.

K. A. Lillycrop, E. S. Phillips, A. A. Jackson, M. A. Hanson, and G. C. Burdge, Dietary protein restriction of pregnant rats induces and folic acid supplementation prevents epigenetic modification of hepatic gene expression in the offspring, J. Nutr, vol.135, issue.6, pp.1382-1386, 2005.

G. C. Burdge, J. Slater-jefferies, C. Torrens, E. S. Phillips, M. A. Hanson et al., Dietary protein restriction of pregnant rats in the F0 generation induces altered methylation of hepatic gene promoters in the adult male offspring in the F1 and F2 generations, Br. J. Nutr, vol.97, issue.3, pp.435-439, 2007.

K. A. Lillycrop, E. S. Phillips, C. Torrens, M. A. Hanson, A. A. Jackson et al., Feeding pregnant rats a protein-restricted diet persistently alters the methylation of specific cytosines in the hepatic PPAR alpha promoter of the offspring, Br. J. Nutr, vol.100, issue.2, pp.278-282, 2008.

B. T. Alexander, Epigenetic changes in gene expression: focus on "The liver X-receptor gene promoter is hypermethylated in a mouse model of prenatal protein restriction, Am. J. Physiol. Regul. Integr. Comp. Physiol, vol.298, issue.2, pp.272-274, 2010.

K. A. Lillycrop, J. Rodford, and E. S. Garratt, Maternal protein restriction with or without folic acid supplementation during pregnancy alters the hepatic transcriptome in adult male rats, Br. J. Nutr, vol.103, issue.12, pp.1711-1719, 2010.

E. M. Van-straten, V. W. Bloks, and N. C. Huijkman, The liver X-receptor gene promoter is hypermethylated in a mouse model of prenatal protein restriction, Am. J. Physiol. Regul. Integr. Comp. Physiol, vol.298, issue.2, pp.275-282, 2010.

A. Kulkarni, K. Dangat, A. Kale, P. Sable, P. Chavan-gautam et al., Effects of altered maternal folic acid, vitamin B12 and docosahexaenoic acid on placental global DNA methylation patterns in Wistar rats, PLoS ONE, vol.6, issue.3, p.17706, 2011.

. O'neill-rj, P. B. Vrana, and C. S. Rosenfeld, Maternal methyl supplemented diets and effects on offspring health, Front. Genet, vol.5, p.289, 2014.

R. Obeid, The metabolic burden of methyl donor deficiency with focus on the betaine homocysteine methyltransferase pathway, Nutrients, vol.5, issue.9, pp.3481-3495, 2013.

K. R. Shorter, M. R. Felder, and P. B. Vrana, Consequences of dietary methyl donor supplements: is more always better?, Prog. Biophys. Mol. Biol, vol.118, issue.1-2, pp.14-20, 2015.

S. H. Zeisel, Importance of methyl donors during reproduction, Am. J. Clin. Nutr, vol.89, issue.2, pp.673-677, 2009.

H. Chang, T. Zhang, and Z. Zhang, Tissue-specific distribution of aberrant DNA methylation associated with maternal low-folate status in human neural tube defects, J. Nutr. Biochem, vol.22, issue.12, pp.1172-1177, 2011.

J. L. Gueant, F. Namour, R. M. Gueant-rodriguez, and J. L. Daval, Folate and fetal programming: a play in epigenomics?, Trends Endocrinol. Metab, vol.24, issue.6, pp.279-289, 2013.
URL : https://hal.archives-ouvertes.fr/hal-01702800

C. A. Atta, K. M. Fiest, and A. D. Frolkis, Global birth prevalence of spina bifida by folic acid fortification status: a systematic review and meta-analysis, Am. J. Public Health, vol.106, issue.1, pp.24-34, 2016.

M. A. Honein, L. J. Paulozzi, T. J. Mathews, J. D. Erickson, and L. Y. Wong, Impact of folic acid fortification of the US food supply on the occurrence of neural tube defects, JAMA, vol.285, issue.23, pp.2981-2986, 2001.

A. D. Smith, Y. I. Kim, and H. Refsum, Is folic acid good for everyone? Am, J. Clin. Nutr, vol.87, issue.3, pp.517-533, 2008.

L. R. Schaevitz and J. E. Berger-sweeney, Gene-environment interactions and epigenetic pathways in autism: the importance of one-carbon metabolism, ILAR J, vol.53, issue.3-4, pp.322-340, 2012.

C. S. Yajnik, S. S. Deshpande, and A. A. Jackson, Vitamin B12 and folate concentrations during pregnancy and insulin resistance in the offspring: the Pune Maternal Nutrition Study, Diabetologia, vol.51, issue.1, pp.29-38, 2008.

Y. Huang, Y. He, X. Sun, Y. He, Y. Li et al., Maternal high folic acid supplement promotes glucose intolerance and insulin resistance in male mouse offspring fed a high-fat diet, Int. J. Mol. Sci, vol.15, issue.4, pp.6298-6313, 2014.

I. M. Szeto, A. Aziz, and P. J. Das, High multivitamin intake by Wistar rats during pregnancy results in increased food intake and components of the metabolic syndrome in male offspring, Am. J. Physiol. Regul. Integr. Comp. Physiol, vol.295, issue.2, pp.575-582, 2008.

I. M. Szeto, P. J. Das, A. Aziz, and G. H. Anderson, Multivitamin supplementation of Wistar rats during pregnancy accelerates the development of obesity in offspring fed an obesogenic diet, Int. J. Obes. (Lond.), vol.33, issue.3, pp.364-372, 2009.

C. E. Cho, D. Sanchez-hernandez, R. Sa, P. S. Huot, Y. I. Kim et al., High folate gestational and post-weaning diets alter hypothalamic feeding pathways by DNA methylation in Wistar rat offspring, Epigenetics, vol.8, issue.7, pp.710-719, 2013.

J. P. Curley and R. Mashoodh, Parent-of-origin and transgenerational germline influences on behavioral development: the interacting roles of mothers, fathers, and grandparents, Dev. Psychobiol, vol.52, issue.4, pp.312-330, 2010.

W. Reik, M. Constancia, and A. Fowden, Regulation of supply and demand for maternal nutrients in mammals by imprinted genes, J. Physiol, vol.547, pp.35-44, 2003.

B. K. Jones, J. Levorse, and S. M. Tilghman, Deletion of a nucleasesensitive region between the Igf2 and H19 genes leads to Igf2 misregulation and increased adiposity, Hum. Mol. Genet, vol.10, issue.8, pp.807-814, 2001.

F. M. Smith, A. S. Garfield, and A. Ward, Regulation of growth and metabolism by imprinted genes, Cytogenet. Genome Res, vol.113, issue.1-4, pp.279-291, 2006.

M. Charalambous, S. T. Da-rocha, and F. Ac, Genomic imprinting, growth control and the allocation of nutritional resources: consequences for postnatal life, Curr. Opin. Endocrinol. Diabetes Obes, vol.14, issue.1, pp.3-12, 2007.

B. T. Heijmans, E. W. Tobi, and A. D. Stein, Persistent epigenetic differences associated with prenatal exposure to famine in humans, Proc. Natl Acad. Sci. USA, vol.105, issue.44, pp.17046-17049, 2008.

E. W. Tobi, B. T. Heijmans, and D. Kremer, DNA methylation of IGF2, GNASAS, INSIGF and LEP and being born small for gestational age, Epigenetics, vol.6, issue.2, pp.171-176, 2011.

M. I. Bouwland-both, N. H. Van-mil, and L. Stolk, DNA methylation of IGF2DMR and H19 is associated with fetal and infant growth: the Generation R study, PLoS ONE, vol.8, issue.12, p.81731, 2013.

R. P. Steegers-theunissen, S. A. Obermann-borst, and D. Kremer, Periconceptional maternal folic acid use of 400 microg per day is related to increased methylation of the IGF2 gene in the very young child, PLoS ONE, vol.4, issue.11, p.7845, 2009.

W. N. Cooper, B. Khulan, and S. Owens, DNA methylation profiling at imprinted loci after periconceptional micronutrient supplementation in humans: results of a pilot randomized controlled trial, FASEB J, vol.26, issue.5, pp.1782-1790, 2012.

M. Ouni, M. P. Belot, A. L. Castell, D. Fradin, and P. Bougneres, The P2 promoter of the IGF1 gene is a major epigenetic locus for GH responsiveness, Pharmacogenomics J, vol.16, issue.1, pp.102-106, 2016.
URL : https://hal.archives-ouvertes.fr/hal-02329906

K. J. Claycombe, E. O. Uthus, J. N. Roemmich, L. K. Johnson, and W. T. Johnson, Prenatal low-protein and postnatal high-fat Diets induce rapid adipose tissue growth by Inducing Igf2 expression in Sprague Dawley rat offspring, J. Nutr, vol.143, issue.10, pp.1533-1539, 2013.

. Research-article-amarger, . Giudicelli, &. Pagniez, L. Parnet-49-gong, Y. X. Pan et al., Gestational low protein diet in the rat mediates Igf2 gene expression in male offspring via altered hepatic DNA methylation, Epigenetics, vol.5, issue.7, pp.619-626, 2010.

E. Ivanova, J. H. Chen, A. Segonds-pichon, S. E. Ozanne, and G. Kelsey, DNA methylation at differentially methylated regions of imprinted genes are resistant to developmental programming by maternal nutrition, Epigenetics, vol.7, issue.10, pp.1200-1210, 2012.

X. Lan, E. C. Cretney, and J. Kropp, Maternal diet during pregnancy induces gene expression and DNA methylation changes in fetal tissues in sheep, Front. Genet, vol.4, p.49, 2013.

F. Giudicelli, A. L. Brabant, I. Grit, P. Parnet, and V. Amarger, Excess of methyl donor in the perinatal period reduces postnatal leptin secretion in rat and interacts with the effect of protein content in diet, PLoS ONE, vol.8, issue.7, p.68268, 2013.

V. Amarger, A. Lecouillard, and L. Ancellet, Protein content and methyl donors in maternal diet interact to influence the proliferation rate and cell fate of neural stem cells in rat hippocampus, Nutrients, vol.6, issue.10, pp.4200-4217, 2014.

P. G. Reeves, Components of the AIN-93 diets as improvements in the AIN-76A diet, J. Nutr, vol.127, pp.838-841, 1997.

R. A. Waterland, D. C. Dolinoy, J. R. Lin, C. A. Smith, X. Shi et al., Maternal methyl supplements increase offspring DNA methylation at Axin Fused, Genesis, vol.44, issue.9, pp.401-406, 2006.

G. L. Wolff, R. L. Kodell, S. R. Moore, and C. A. Cooney, Maternal epigenetics and methyl supplements affect agouti gene expression in Avy/a mice, FASEB J, vol.12, issue.11, pp.949-957, 1998.

J. D. Finkelstein and J. J. Martin, Methionine metabolism in mammals, J. Biol. Chem, vol.261, issue.4, pp.1582-1587, 1986.

J. Vandesompele, D. Preter, K. Pattyn, and F. , Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes

, Genome Biol, vol.3, issue.7, p.34, 2002.

D. Monk, R. Sanches, and P. Arnaud, Imprinting of IGF2 P0 transcript and novel alternatively spliced INS-IGF2 isoforms show differences between mouse and human, Hum. Mol. Genet, vol.15, issue.8, pp.1259-1269, 2006.
URL : https://hal.archives-ouvertes.fr/hal-01934550

. Ncbi-nucleotide-database,

T. Moore, M. Constancia, and M. Zubair, Multiple imprinted sense and antisense transcripts, differential methylation and tandem repeats in a putative imprinting control region upstream of mouse Igf2, Proc. Natl Acad. Sci. USA, vol.94, issue.23, pp.12509-12514, 1997.

S. Eden, M. Constancia, and T. Hashimshony, An upstream repressor element plays a role in Igf2 imprinting, EMBO J, vol.20, issue.13, pp.3518-3525, 2001.

E. Markljung, L. Jiang, and J. D. Jaffe, ZBED6, a novel transcription factor derived from a domesticated DNA transposon regulates IGF2 expression and muscle growth, PLoS Biol, vol.7, issue.12, p.1000256, 2009.

A. Murrell, S. Heeson, and L. Bowden, An intragenic methylated region in the imprinted Igf2 gene augments transcription, Embo Rep, vol.2, issue.12, pp.1101-1106, 2001.

A. C. Bell and G. Felsenfeld, Methylation of a CTCF-dependent boundary controls imprinted expression of the Igf2 gene, Nature, vol.405, issue.6785, pp.482-485, 2000.

T. Arima, R. A. Drewell, and K. L. Arney, A conserved imprinting control region at the HYMAI/ZAC domain is implicated in transient neonatal diabetes mellitus, Hum. Mol. Genet, vol.10, issue.14, pp.1475-1483, 2001.

I. Iglesias-platas, A. Martin-trujillo, P. Petazzi, A. Guillaumet-adkins, M. Esteller et al., Altered expression of the imprinted transcription factor PLAGL1 deregulates a network of genes in the human IUGR placenta, Hum. Mol. Genet, vol.23, issue.23, pp.6275-6285, 2014.

Q. Fu, R. A. Mcknight, C. W. Callaway, X. Yu, R. H. Lane et al., Intrauterine growth restriction disrupts developmental epigenetics around distal growth hormone response elements on the rat hepatic IGF-1 gene, FASEB J, vol.29, issue.4, pp.1176-1184, 2015.

M. Annunziata, R. Granata, and E. Ghigo, The IGF system, Acta Diabetol, vol.48, issue.1, pp.1-9, 2011.

V. Hwa, Y. Oh, and R. G. Rosenfeld, The insulin-like growth factorbinding protein (IGFBP) superfamily, Endocr. Rev, vol.20, issue.6, pp.761-787, 1999.

M. Constancia, W. Dean, S. Lopes, T. Moore, G. Kelsey et al., Deletion of a silencer element in Igf2 results in loss of imprinting independent of H19, Nat. Genet, vol.26, issue.2, pp.203-206, 2000.

A. Varrault, C. Gueydan, and A. Delalbre, Zac1 regulates an imprinted gene network critically involved in the control of embryonic growth, Dev. Cell, vol.11, issue.5, pp.711-722, 2006.
URL : https://hal.archives-ouvertes.fr/inserm-00158399

T. Ludwig, L. Borgne, R. Hoflack, and B. , Roles for mannose-6-phosphate receptors in lysosomal enzyme sorting, IGF-II binding and clathrin-coat assembly, Trends Cell Biol, vol.5, issue.5, pp.202-206, 1995.

A. D. Stein, A. Rundle, N. Wada, R. A. Goldbohm, and L. H. Lumey, Associations of gestational exposure to famine with energy balance and macronutrient density of the diet at age 58 years differ according to the reference population used, J. Nutr, vol.139, issue.8, pp.1555-1561, 2009.

M. Palou, T. Priego, J. Sanchez, A. Palou, and C. Pico, Sexual dimorphism in the lasting effects of moderate caloric restriction during gestation on energy homeostasis in rats is related with fetal programming of insulin and leptin resistance, Nutr. Metab. (Lond.), vol.7, p.69, 2010.

W. Y. Kwong, D. J. Miller, and E. Ursell, Imprinted gene expression in the rat embryo-fetal axis is altered in response to periconceptional maternal low protein diet, Reproduction, vol.132, issue.2, pp.265-277, 2006.

E. J. Radford, E. Isganaitis, and J. Jimenez-chillaron, An unbiased assessment of the role of imprinted genes in an intergenerational model of developmental programming, PLoS Genet, vol.8, issue.4, p.1002605, 2012.

A. D. Stein, P. A. Zybert, M. Van-de-bor, and L. H. Lumey, Intrauterine famine exposure and body proportions at birth: the Dutch Hunger Winter, Int. J. Epidemiol, vol.33, issue.4, pp.831-836, 2004.

S. C. Langley-evans, D. S. Gardner, and A. A. Jackson, Association of disproportionate growth of fetal rats in late gestation with, Reprod. Fertil, vol.106, issue.2, pp.307-312, 1996.

K. D. Nusken, H. Schneider, and C. Plank, Fetal programming of gene expression in growth-restricted rats depends on the cause of low birth weight, Endocrinology, vol.152, issue.4, pp.1327-1335, 2011.

S. Azzi, T. C. Sas, and Y. Koudou, Degree of methylation of ZAC1 (PLAGL1) is associated with prenatal and post-natal growth in healthy infants of the EDEN mother child cohort, Epigenetics, vol.9, issue.3, pp.338-345, 2014.

J. Baker, J. P. Liu, E. J. Robertson, and A. Efstratiadis, Role of insulinlike growth factors in embryonic and postnatal growth, Cell, vol.75, issue.1, pp.73-82, 1993.

M. Ouni, Y. Gunes, M. P. Belot, A. L. Castell, D. Fradin et al., The IGF1 P2 promoter is an epigenetic QTL for circulating IGF1 and human growth, Clin. Epigenetics, vol.7, issue.1, p.22, 2015.
URL : https://hal.archives-ouvertes.fr/hal-02459502

Q. Fu, X. Yu, C. W. Callaway, R. H. Lane, and R. A. Mcknight, Epigenetics: intrauterine growth retardation (IUGR) modifies the histone code along the rat hepatic IGF-1 gene, FASEB J, vol.23, issue.8, pp.2438-2449, 2009.

S. A. Kaplan and P. Cohen, The somatomedin hypothesis 2007: 50 years later, J. Clin. Endocrinol. Metab, vol.92, issue.12, pp.4529-4535, 2007.

D. J. Chia, B. Varco-merth, and P. Rotwein, Dispersed chromosomal Stat5b-binding elements mediate growth hormone-activated insulin-like growth factor-I gene transcription, J. Biol. Chem, vol.285, issue.23, pp.17636-17647, 2010.

P. K. Fazeli and A. Klibanski, Determinants of GH resistance in malnutrition, J. Endocrinol, vol.220, issue.3, pp.57-65, 2014.

D. N. Tosh, Q. Fu, and C. W. Callaway, Epigenetics of programmed obesity: alteration in IUGR rat hepatic IGF1 mRNA expression and histone structure in rapid vs. delayed postnatal catch-up growth, Am. J. Physiol. Gastrointest. Liver Physiol, vol.299, issue.5, pp.1023-1029, 2010.

E. W. Tobi, L. H. Lumey, and R. P. Talens, DNA methylation differences after exposure to prenatal famine are common and timing-and sex-specific, Hum. Mol. Genet, vol.18, issue.21, pp.4046-4053, 2009.

P. Haggarty, G. Hoad, D. M. Campbell, G. W. Horgan, C. Piyathilake et al., Folate in pregnancy and imprinted gene and repeat element methylation in the offspring, Am. J. Clin. Nutr, vol.97, issue.1, pp.94-99, 2013.

H. S. Lee, A. Barraza-villarreal, and C. Biessy, Dietary supplementation with polyunsaturated fatty acid during pregnancy modulates DNA methylation at IGF2/H19 imprinted genes and growth of infants, Physiol. Genomics, vol.46, issue.23, pp.851-857, 2014.

Y. J. Loke, J. C. Galati, and R. Morley, Association of maternal and nutrient supply line factors with DNA methylation at the imprinted IGF2/H19 locus in multiple tissues of newborn twins, Epigenetics, vol.8, issue.10, pp.1069-1079, 2013.

P. Fauque, M. A. Ripoche, and J. Tost, Modulation of imprinted gene network in placenta results in normal development of in vitro manipulated mouse embryos, Hum. Mol. Genet, vol.19, issue.9, pp.1779-1790, 2010.
URL : https://hal.archives-ouvertes.fr/hal-01788884

M. Paulsen and F. Ac, DNA methylation in genomic imprinting, development, and disease, J. Pathol, vol.195, issue.1, pp.97-110, 2001.

W. D. Rees, F. A. Wilson, and C. A. Maloney, Sulfur amino acid metabolism in pregnancy: the impact of methionine in the maternal diet, J. Nutr, vol.136, pp.1701-1705, 2006.

C. M. Donangelo and J. C. King, Maternal zinc intakes and homeostatic adjustments during pregnancy and lactation, Nutrients, vol.4, issue.7, pp.782-798, 2012.

R. A. Waterland, Assessing the effects of high methionine intake on DNA methylation, J. Nutr, vol.136, pp.1706-1710, 2006.

M. D. Niculescu and S. H. Zeisel, Diet, methyl donors and DNA methylation: interactions between dietary folate, methionine and choline, J. Nutr, vol.132, pp.2333-2335, 2002.