, S * 2 (r, z) (b) B * 2 (r, z)

, Representation of the steady-state solution

W. Da, 2) (µ(1)) := 1/µ(1)
URL : https://hal.archives-ouvertes.fr/in2p3-00148681

N. W. Da,

N. W. Da, According to Remark 2.2 and Definition 4.1, the stability analysis of system (1.2) (shown in Section 1) can be rewritten as ? If Da < Da W (1.2) (µ(1)), then the equilibrium solution (1, 0) of system (1.2) is asymptotically stable. ? If µ satisfies (A1) and Da > Da NW (A1),(1.2) (µ(1)), then the equilibrium solution

, ? If µ satisfies (A2) and Da > Da NW (A2)

, (1.2) = 1 (and the difference, when µ(1) = 0.5, between the variable Da W (2.4) (Th B , µ(1)) and the constant Da W (1.2) (µ(1)) = 2). In both cases Th B ?, Th B ) and the constant Da NW (A2)

, Similarly, for the particular case when µ(1) = 0.5, we observe that log(Da W (2.4) (Th B , 0.5)) ? log(2) also for values smaller than log(Th B ) ? ?2 (Th B ? 0.1). This comparison, performed with other reaction values µ(1) ? {i/20} 20 i=1

J. F. Andrews, A mathematical model for the continuous culture of microorganisms utilizing inhibitory substrates, Biotechnology and Bioengineering, vol.10, issue.6, pp.707-723, 1968.

R. Aris, Phenomena of multiplicity, stability and symmetry, Annals of the New York Academy of Sciences, vol.231, issue.1, pp.86-98, 1974.

R. Aris, The Mathematical Theory of Diffusion and Reaction in Permeable Catalysts, vol.1, 1975.

N. H. Asmar, Partial Differential Equations with Fourier Series and Boundary Value Problems, 2005.

J. E. Bailey and D. F. Ollis, Biochemical Engineering Fundamentals. Chemical engineering. McGraw-Hill, 1986.

A. W. Bush and A. E. Cool, The effect of time delay and growth rate inhibition in the bacterial treatment of wastewater, Journal of Theoretical Biology, vol.63, issue.2, pp.385-395, 1976.

M. Crespo, B. Ivorra, and A. M. Ramos, Existence and uniqueness of solution of a continuous flow bioreactor model with two species. Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A: Matemáticas, vol.110, issue.2, pp.357-377, 2016.

M. Crespo, A. M. Ramos, and B. Ivorra, A. Rapaport; Modeling and optimization of activated sludge bioreactors for wastewater treatment taking into account spatial inhomogeneities, Journal of Process Control, vol.54, pp.118-128, 2017.
URL : https://hal.archives-ouvertes.fr/in2p3-00010761

P. V. Danckwerts, Continuous flow systems, Chemical Engineering Science, vol.2, issue.1, pp.1-13, 1953.

J. I. Díaz, Remarks on a precedent paper by Crespo, Ivorra and Ramos on the stability of bioreactor processes

J. I. Díaz and A. C. , On the principle of pseudo-linearized stability: Applications to some delayed nonlinear parabolic equations, Nonlinear Analysis, vol.63, issue.5, pp.997-1007, 2005.

D. Dochain, Automatic Control of Bioprocesses, 2010.

D. Dochain and P. Vanrolleghem, Dynamical Modelling and Estimation in Wastewater Treatment Processes, 2001.

A. K. Dramé, A semilinear parabolic boundary-value problem in bioreactors theory, Electronic Journal of Differential Equations, 2004.

A. K. Dramé, C. Lobry, J. Harmand, A. Rapaport, and F. Mazenc, Multiple stable equilibrium profiles in tubular bioreactors. Mathematical and Computer Modelling, vol.48, pp.1840-1853, 1112.

A. E. Fischer and J. E. Marsden, Linearization stability of nonlinear partial differential equations, Proceedings of Symposia in Pure Mathematics, vol.27, pp.219-263, 1975.

P. Gajardo, J. Harmand, H. C. Ramírez, and A. Rapaport, Minimal time bioremediation of natural water resources, vol.47, pp.1764-1769, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00521118

J. P. Grivet, Nonlinear population dynamics in the chemostat, Computing in Science Engineering, vol.3, 2001.

J. K. Hale, Asymptotic Behavior of Dissipative Systems. Mathematical Surveys and Monographs, 2010.

D. Herbert, R. Elsworth, and R. C. , Telling; The continuous culture of bacteria; a theoretical and experimental study, Journal of general microbiology, 1956.

J. A. Infante and J. M. Rey,

, Métodos Numéricos. Teoría, problemas y prácticas con MATLAB. Ediciones Pirámide. Grupo Anaya, 2015.

S. Ishihara, M. Otsuji, and A. Mochizuki, Transient and steady state of mass-conserved reactiondiffusion systems, Phys. Rev. E, vol.75, p.15203, 2007.

A. W. Knapp, Advanced Real Analysis. Cornerstones. Birkhäuser Boston, 2005.

H. J. Kuiper, Invariant sets for nonlinear elliptic and parabolic systems, Journal on Mathematical Analysis, vol.11, issue.6, pp.1075-1103, 1980.

L. Lanzani and Z. W. Shen, On the Robin boundary condition for Laplace's equation in Lipschitz domains, Communications in Partial Differential Equations, vol.29, issue.1 & 2, pp.91-109, 2004.

W. Liu, Elementary Feedback Stabilization of the Linear Reaction-Convection-Diffusion Equation and the Wave Equation, Mathématiques et Applications. Springer Berlin Heidelberg, 2009.

G. B. Marin, Advances in Chemical Engineering: Multiscale analysis. Advances in Chemical Engineering, 2005.

R. H. Martin, Asymptotic behavior for semilinear differential equations in Banach spaces, SIAM Journal on Mathematical Analysis, vol.9, issue.6, pp.1105-1119, 1978.

H. Matano, Convergence of solutions of one-dimensional semilinear parabolic equations, J. Math. Kyoto Univ, vol.18, issue.2, pp.221-227, 1978.

H. Matano, Asymptotic behavior and stability of solutions of semilinear diffusion equations, Publ. Res. Inst. Math. Sci, vol.15, pp.401-454, 1979.

C. R. Mcgowin and D. D. Perlmutter, Tubular reactor steady state and stability characteristics. I. Effect of axial mixing, AIChE Journal, vol.17, issue.4, pp.831-837, 1971.

J. Moreno, Optimal time control of bioreactors for the wastewater treatment, Optimal Control Applications and Methods, vol.20, issue.3, pp.145-164, 1999.

Y. Morita and T. Ogawa, Stability and bifurcation of nonconstant solutions to a reaction diffusion system with conservation of mass, Nonlinearity, vol.23, issue.6, p.1387, 2010.

C. V. Pao, Asymptotic stability of reaction-diffusion systems in chemical reactor and combustion theory, Journal of Mathematical Analysis and Applications, vol.82, issue.2, pp.503-526, 1981.

C. V. Pao, Nonlinear Parabolic and Elliptic Equations. Fems Symposium, 1992.

C. Parés, C. Vázquez, and F. Coquel, Advances in Numerical Simulation in Physics and Engineering: Lecture Notes of the XV 'Jacques-Louis Lions, 2014.

A. J. Perumpanani, J. A. Sherratt, and P. K. Maini, Phase differences in reaction-diffusionadvection systems and applications to morphogenesis, IMA Journal of Applied Mathematics, vol.55, pp.19-33, 1995.

A. M. Ramos, Introducción al Análisis Matemático del Método de Elementos Finitos. Editorial Complutense, 2012.

V. S. Rao, P. Raja-sekhara, and . Rao, Basic chemostat model revisted. Differential Equations and Dynamical Systems, vol.17, pp.3-16, 2009.

A. Rapaport, I. Haidar, and J. Harmand, Global dynamics of the buffered chemostat for a general class of response functions, Journal of Mathematical Biology, vol.71, issue.1, pp.69-98, 2015.
URL : https://hal.archives-ouvertes.fr/hal-00923826

J. Siebert, S. Alonso, M. Bär, and E. Schöll, Dynamics of reaction-diffusion patterns controlled by asymmetric nonlocal coupling as a limiting case of differential advection, Phys. Rev. E, vol.89, p.52909, 2014.

H. Smith and P. Waltman, The theory of the Chemostat, Cambridge studies in Mathematical biology, vol.13, 1995.

N. A. Smith, S. L. Mitchell, and A. M. Ramos, Analysis and simplification of a mathematical model for high-pressure food processes, Applied Mathematics and Computation, vol.226, pp.20-37, 2014.

S. A. Vejtasa and R. A. Schmitz, An experimental study of steady state multiplicity and stability in an adiabatic stirred reactor, AIChE Journal, vol.16, issue.3, pp.410-419, 1970.

H. F. Weinberger, A First Course in Partial Differential Equations with Complex Variables and Transform Methods, 1995.

J. J. Winkin, D. Dochain, and P. Ligarius, Dynamical analysis of distributed parameter tubular reactors, Automatica, vol.36, issue.3, pp.349-361, 2000.

M. Crespo,

. Umr-mistea--mathématiques, INRA/SupAgro). 2, Place P.Viala, 34060 Montpellier, France E-mail address: maria.crespo-moya@umontpellier.fr Benjamin Ivorra Departamento de Matemática Aplicada & Instituto de Matemática Interisciplinar, Informatique et Statistique pour lÉnvironnement et lÁgronomie