J. Stökl, A deceptive pollination system targeting drosophilids through olfactory mimicry of yeast, Curr. Biol, vol.20, pp.1846-1852, 2010.

P. G. Becher, M. Bengtsson, B. S. Hansson, and P. Witzgall, Flying the fly: long-range flight behavior of Drosophila melanogaster to attractive odors, J. Chem. Ecol, vol.36, pp.599-607, 2010.

P. G. Becher, Yeast, not fruit volatiles mediate Drosophila melanogaster attraction, oviposition and development, Funct. Ecol, vol.26, pp.822-828, 2012.

D. H. Cha, T. Adams, H. Rogg, and P. J. Landolt, Identification and field evaluation of fermentation volatiles from wine and vinegar that mediate attraction of spotted wing drosophila, Drosophila suzukii, J. Chem. Ecol, vol.38, pp.1419-1431, 2012.

J. Ringo, G. Sharon, and D. Segal, Bacteria-induced sexual isolation in Drosophila. Fly, vol.5, pp.310-315, 2011.

I. Venu, Z. Durisko, J. Xu, and R. Dukas, Social attraction mediated by fruit flies' microbiome, J. Exp. Biol, vol.217, pp.1346-1352, 2014.

M. Bakula, The persistence of a microbial flora during postembryogenesis of Drosophila melanogaster, J. Invertebr. Pathol, vol.14, pp.365-374, 1969.

E. V. Ridley, A. C. Wong, S. Westmiller, and A. E. Douglas, Impact of the resident microbiota on the nutritional phenotype of Drosophila melanogaster, PLoS ONE, vol.7, p.36765, 2012.

E. V. Ridley, A. C. Wong, and A. E. Douglas, Microbe-dependent and nonspecific effects of procedures to eliminate the resident microbiota from Drosophila melanogaster, Appl. Environ. Microbiol, vol.79, pp.3209-3214, 2013.

G. G. Gilbert, Dispersal of yeast and bacteria by Drosophila in a temperate forest, Oecologia, vol.46, pp.135-137, 1980.

W. T. Starmer, V. Aberdeen, and M. A. Lachance, The yeast community associated with Opuntia stricta in Florida with regard to the moth Cactoblastis cactorum, Fl. Sci, vol.51, pp.7-11, 1988.

I. W. Keesey, Adult frass provides a pheromone signature for Drosophila feeding and aggregation, J. Chem. Ecol, vol.42, pp.739-747, 2016.

J. A. Chandler, J. M. Lang, S. Bhatnagar, J. A. Eisen, and A. Kopp, Bacterial communities of diverse Drosophila species: ecological context of a host-microbe model system, PLoS Genet, vol.7, p.1002272, 2011.

N. A. Broderick and B. Lemaitre, Gut-associated microbes of Drosophila melanogaster, Gut Microbes, vol.4, pp.307-321, 2012.

P. Engel and N. A. Moran, The gut microbiota of insects-diversity in structure and function, FEMS Microbiol. Rev, vol.37, pp.699-735, 2013.

B. Lemaitre and I. Miguel-aliaga, The digestive tract of Drosophila melanogaster, Annu. Rev. Genet, vol.47, pp.377-404, 2013.

F. Staubach, J. F. Baines, S. Künzel, E. M. Bik, and D. A. Petrov, Host species and environmental effects on bacterial communities associated with Drosophila in the laboratory and in the natural environment, PLoS ONE, vol.8, p.70749, 2013.

C. Anagnostou, E. A. Legrand, and M. Rohlfs, Friendly food for fitter flies? -influence of dietary microbial species on food choice and parasitoid resistance in Drosophila, Oikos, vol.119, pp.533-541, 2010.

J. A. Stamps, L. H. Yang, V. M. Morales, and K. L. Boundy-mills, Drosophila regulate yeast density and increase yeast community similarity in a natural substrate, PLoS ONE, vol.7, p.42238, 2012.

S. M. Saerens, F. R. Delvaux, K. J. Verstrpen, and J. M. Thevelein, Production and biological function of volatile esters in Saccharomyces cerevisiae, Microb. Biotechnol, vol.3, pp.165-177, 2010.

L. Palanca, A. C. Gaskett, C. S. Günther, R. N. Newcomb, and M. R. Goddard, Quantifying variation in the ability of yeasts to attract Drosophila melanogaster, PLoS ONE, vol.8, p.75332, 2013.

C. C. Buser, R. D. Newcomb, A. C. Gaskett, and M. R. Goddard, Niche construction initiates the evolution of mutualistic interactions, Ecol. Lett, vol.17, pp.1257-1264, 2014.

J. F. Christiaens, The fungal aroma gene ATF 1 promotes dispersal of yeast cells through insect vectors, Cell. Rep, vol.9, pp.425-432, 2014.

S. Schulz and J. S. Dickschat, Bacterial volatiles: the smell of small organisms, Nat. Prod. Rep, vol.24, pp.814-842, 2007.

B. Audrain, M. A. Farag, C. Ryu, and J. M. Ghigo, Role of bacterial volatile compounds in bacterial biology, FEMS Microbiol. Rev, vol.2, pp.1-12, 2015.
URL : https://hal.archives-ouvertes.fr/pasteur-02017355

V. Corby-harris, Geographical distribution and diversity of bacteria associated with natural populations of Drosophila melanogaster, Appl. Environ. Microbiol, vol.73, pp.3470-3479, 2007.

A. C. Wong, J. M. Chaston, and A. E. Douglas, The inconstant gut microbiota of Drosophila species revealed by 16S rRNA gene analysis, I.S.M.E.J, vol.7, pp.1922-1932, 2013.

C. J. Reaume and M. B. Sokolowski, The nature of Drosophila melanogaster, Curr. Biol, vol.16, pp.623-628, 2006.

C. Ren, P. Webster, S. E. Finkel, and J. Tower, Increased internal and external bacterial load during Drosophila aging without life-span trade-off, Cell. Metab, vol.6, pp.144-152, 2007.

J. C. Paredes, D. P. Welchman, M. Poidevin, and B. Lemaitre, Negative regulation by amidase PGRPs shapes the Drosophila antibacterial response and protects the fly from innocuous infection, Immunity, vol.35, pp.770-779, 2011.

T. J. Montville, A. H. Hsu, and M. E. Meyer, High-efficiency conversion of pyruvate to acetoin by Lactobacillus plantarum during ph-controlled and fed-batch fermentations, Appl. Environ. Microbiol, vol.53, pp.1798-1802, 1987.

J. De-ley, On the formation of acetoin by, Acetobacter. J. Gen. Microbiol, vol.21, pp.352-365, 1959.

C. N. Wong, P. Ng, and A. E. Douglas, Low-diversity bacterial community in the gut of the fruitfly Drosophila melanogaster, Environ. Microbiol, vol.13, pp.1889-1890, 2011.

Z. Xiao and J. R. Lu, Strategies for enhancing fermentative production of acetoin: A review, Biotechnol. Adv, vol.32, pp.492-503, 2014.

E. Gonzalez, Role of saccharomyces cerevisiae oxidoreductases Bdh1p and Ara1p in the metabolism of acetoin and 2,3-butanediol, Appl. Environ. Microbiol, vol.76, pp.670-679, 2010.

T. S. Davis, T. L. Crippen, R. W. Hofstetter, and J. K. Tomberlin, Microbial volatile emissions as insect semiochemicals, J. Chem. Ecol, vol.39, pp.840-859, 2013.

D. C. Robacker and C. R. Lauzon, Purine metabolizing capability of Enterobacter agglomerans affects volatiles production and attractiveness to Mexican fruit fly, J. Chem. Ecol, vol.28, pp.1549-1563, 2002.

T. Tolasch, S. Sölter, M. Toth, J. Ruther, and W. Francke, R)-Acetoin-female sex pheromone of the summer chafer Amphimallon solstitiale, J. Chem. Ecol, vol.29, pp.1045-1050, 2003.

I. Saïd, M. Renou, J. Morin, J. M. Ferreira, and D. Rochat, Interactions between acetoin, a plant volatile, and pheromone in Rhynchophorus palmarum: behavioral and olfactory neuron responses, J. Chem. Ecol, vol.31, pp.1789-1805, 2005.

J. Farine, the male abdominal glands of Leucophaea maderae: chemical identification of the volatile secretion and sex pheromone function, J. Chem. Ecol, vol.33, pp.405-415, 2007.
URL : https://hal.archives-ouvertes.fr/hal-00450910

M. C. Stensmyr, E. Giordano, A. Balloi, A. Angioy, and B. S. Hansson, Novel natural ligands for Drosophila olfactory receptor neurones, J. Exp. Biol, vol.206, pp.715-724, 2003.

S. A. Kreher, J. Y. Kwon, and J. R. Carlson, The molecular basis of odor coding in the Drosophila larva, Neuron, vol.46, pp.445-456, 2005.

S. A. Kreher, D. Mathew, J. Kim, and J. R. Carlson, Translation of sensory input into behavioral output via an olfactory system, Neuron, vol.59, pp.110-124, 2008.

D. Pelz, T. Roeske, Z. Syed, M. De-bruyne, and C. G. Galizia, The molecular receptive range of an olfactory receptor in vivo (Drosophila melanogaster Or22a), J. Neurobiol, vol.66, pp.1544-63, 2006.

A. F. Silbering, Complementary function and integrated wiring of the evolutionarily distinct Drosophila olfactory subsystems, J. Neurosci, vol.31, pp.13357-13375, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00788031

M. De-bruyne and T. C. Baker, Odor detection in insects: volatile codes, J. Chem. Ecol, vol.34, pp.882-897, 2008.

A. Couto, M. Alenius, and B. J. Dickson, Molecular, anatomical, and functional organization of the Drosophila olfactory system, Curr. Biol, vol.15, pp.1535-1547, 2005.

E. Fishilevich, Chemotaxis behavior mediated by single larval olfactory neurons in Drosophila, Curr. Biol, vol.15, pp.2086-2096, 2005.

J. Farine, J. Cortot, and J. Ferveur, Drosophila adult and larval pheromones modulate larval food choice, Proc. R. Soc. B, vol.281, p.20140043, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01211085

B. Gerber and R. F. Stocker, The Drosophila larva as a model for studying chemosensation and chemosensory learning: a review, Chem. Senses, vol.32, pp.65-89, 2007.

M. Beltrami, M. C. Medina-munoz, F. Pino, J. F. Ferveur, and R. Godoy-herrera, Chemical cues influence pupation behavior of Drosophila simulans and Drosophila buzzatii in nature and in the laboratory, PLoS ONE, vol.7, p.39393, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00723099

J. Thibert, J. Farine, J. Cortot, and J. Ferveur, Drosophila food-associated pheromones: effect of experience, genotype and antibiotics on larval behavior, PLoS ONE, vol.11, p.151451, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01394260

J. R. Arguello, C. Sellanes, Y. R. Lou, and R. A. Raguso, Can yeast (S. cerevisiae) metabolic volatiles provide polymorphic signaling?, PLoS ONE, vol.8, p.70219, 2013.

B. Wertheim, J. Marchais, L. E. Vet, and M. Dicke, Allee effect in larval resource exploitation in Drosophila: an interaction among density of adults, larvae, and micro-organisms, Ecological Entomology, vol.27, pp.608-617, 2002.

B. Erkosar and F. Leulier, Transient adult microbiota, gut homeostasis and longevity: Novel insights from the Drosophila model, FEBS Lett, vol.588, pp.4250-4257, 2014.

M. Rohlfs, Clash of kingdoms or why Drosophila larvae positively respond to fungal competitors, Front. Zool, vol.2, issue.2, 2005.

D. H. Cha, A four-component synthetic attractant for Drosophila suzukii (Diptera: Drosophilidae) isolated from fermented bait headspace, Pest Manag. Sci, vol.70, pp.324-331, 2013.

J. Flaven-pouchon, Transient and permanent experience with fatty acids changes Drosophila melanogaster preference and fitness, PLoS ONE, vol.9, p.92352, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01211074

G. Sharon, Commensal bacteria play a role in mating preference of Drosophila melanogaster, P.N.A.S, vol.107, 2010.

G. Storelli, Lactobacillus plantarum promotes Drosophila systemic growth by modulating hormonal signals through TORdependent nutrient sensing, Cell Metab, vol.14, pp.403-414, 2011.

A. Lizé, R. Mckay, and Z. Lewis, Kin recognition in Drosophila: the importance of ecology and gut microbiota, I.S.M.E, vol.8, pp.469-477, 2013.

B. Erkosar, G. Storelli, A. Defaye, and F. Leulier, Host-intestinal microbiota mutualism: learning on the fly, Cell Host Microbe, vol.13, pp.8-14, 2013.

R. K. Vijendravarma, Gut physiology mediates a trade-off between adaptation to malnutrition and susceptibility to food-borne pathogens, Ecology Letters, vol.18, pp.1078-1086, 2015.

R. Benton, S. Sachse, S. W. Michnick, and L. B. Vosshall, Atypical membrane topology and heteromeric function of Drosophila odorant receptors in vivo, PLoS Biol, vol.4, p.20, 2006.