J. P. Lynch and K. M. Brown, Topsoil foraging?an architectural adaptation of plants to low phosphorus availability, Plant and Soil, vol.237, issue.2, pp.225-237, 2001.
DOI : 10.1023/A:1013324727040

D. L. Lopez-arredondo, M. A. Leyva-gonzalez, S. I. Gonzalez-morales, J. Lopez-bucio, and L. Herrera-estrella, Phosphate Nutrition: Improving Low-Phosphate Tolerance in Crops, Annual Review of Plant Biology, vol.65, issue.1, pp.95-123
DOI : 10.1146/annurev-arplant-050213-035949

R. Heidstra and S. Sabatini, Plant and animal stem cells: similar yet different, Nature Reviews Molecular Cell Biology, vol.2, issue.5, pp.301-312, 2014.
DOI : 10.1038/35067079

J. J. Petricka, C. M. Winter, and P. Benfey, Root Development, Annual Review of Plant Biology, vol.63, issue.1, pp.563-590, 2012.
DOI : 10.1146/annurev-arplant-042811-105501

L. Sanchez-calderon, Characterization of low phosphorus insensitive Mutants Reveals a Crosstalk between Low Phosphorus-Induced Determinate Root Development and the Activation of Genes Involved in the Adaptation of Arabidopsis to Phosphorus Deficiency, PLANT PHYSIOLOGY, vol.140, issue.3, pp.879-889
DOI : 10.1104/pp.105.073825

M. Reymond, S. Svistoonoff, O. Loudet, L. Nussaume, and T. Desnos, Identification of QTL controlling root growth response to phosphate starvation in Arabidopsis thaliana, Plant, Cell and Environment, vol.15, issue.1, pp.115-125, 2006.
DOI : 10.1093/jxb/erg250

J. T. Ward, B. Lahner, E. Yakubova, D. E. Salt, and K. G. Raghothama, The Effect of Iron on the Primary Root Elongation of Arabidopsis during Phosphate Deficiency, PLANT PHYSIOLOGY, vol.147, issue.3, pp.1181-1191, 2008.
DOI : 10.1104/pp.108.118562

S. Svistoonoff, Root tip contact with low-phosphate media reprograms plant root architecture, Nature Genetics, vol.77, issue.6, pp.792-796, 2007.
DOI : 10.1007/s11103-004-1965-5

URL : http://pubman.mpdl.mpg.de/pubman/item/escidoc:1221730/component/escidoc:1221729/svistoonoff_nat_gen_2007.pdf

C. A. Ticconi, ER-resident proteins PDR2 and LPR1 mediate the developmental response of root meristems to phosphate availability, Proc. Natl Acad. Sci. USA, pp.14174-14179, 2009.
DOI : 10.1016/j.cell.2005.09.042

S. Abel, Phosphate sensing in root development, Current Opinion in Plant Biology, vol.14, issue.3, pp.303-309, 2011.
DOI : 10.1016/j.pbi.2011.04.007

URL : https://cloudfront.escholarship.org/dist/prd/content/qt9kw7z8hj/qt9kw7z8hj.pdf

B. Peret, M. Clement, L. Nussaume, and T. Desnos, Root developmental adaptation to phosphate starvation: better safe than sorry, Trends in Plant Science, vol.16, issue.8, pp.442-450, 2011.
DOI : 10.1016/j.tplants.2011.05.006

URL : https://hal.archives-ouvertes.fr/cea-00848566

J. Muller, Iron-Dependent Callose Deposition Adjusts Root Meristem Maintenance to Phosphate Availability, Developmental Cell, vol.33, issue.2, pp.216-230, 2015.
DOI : 10.1016/j.devcel.2015.02.007

M. C. Thibaud, Dissection of local and systemic transcriptional responses to phosphate starvation in Arabidopsis, The Plant Journal, vol.54, issue.9, pp.775-789
DOI : 10.1016/0968-0004(96)10048-7

D. L. Chen, C. A. Delatorre, A. Bakker, and S. Abel, Conditional identification of phosphate-starvation-response mutants in Arabidopsis thaliana, Planta, vol.211, issue.1, pp.13-22, 2000.
DOI : 10.1007/s004250000271

C. A. Ticconi, C. A. Delatorre, B. Lahner, D. E. Salt, and S. Abel, reveals a phosphate-sensitive checkpoint in root development, The Plant Journal, vol.212, issue.6, pp.801-814, 2004.
DOI : 10.1016/S1369-5266(00)80063-1

V. Gonzalez-mendoza, APSR1, a novel gene required for meristem maintenance, is negatively regulated by low phosphate availability, Plant Science, vol.205, issue.206, p.12, 2013.
DOI : 10.1016/j.plantsci.2012.12.015

A. S. Karthikeyan, Arabidopsis thaliana mutant lpsi reveals impairment in the root responses to local phosphate availability, Plant Physiology and Biochemistry, vol.77, pp.60-72, 2014.
DOI : 10.1016/j.plaphy.2013.12.009

J. Dong, An Arabidopsis ABC Transporter Mediates Phosphate Deficiency-Induced Remodeling of Root Architecture by Modulating Iron Homeostasis in Roots, Molecular Plant, vol.10, issue.2, pp.244-259, 2017.
DOI : 10.1016/j.molp.2016.11.001

W. Hoehenwarter, Comparative expression profiling reveals a role of the root apoplast in local phosphate response, BMC Plant Biology, vol.30, issue.3, p.106, 2016.
DOI : 10.1038/nbt.2839

O. A. Hoekenga, AtALMT1, which encodes a malate transporter, is identified as one of several genes critical for aluminum tolerance in Arabidopsis, Proc. Natl Acad. Sci. USA 103, pp.9738-9743, 2006.
DOI : 10.1016/0076-6879(92)07008-C

Y. Kobayashi, Characterization of AtALMT1 Expression in Aluminum-Inducible Malate Release and Its Role for Rhizotoxic Stress Tolerance in Arabidopsis, PLANT PHYSIOLOGY, vol.145, issue.3, pp.843-852, 2007.
DOI : 10.1104/pp.107.102335

S. Iuchi, Zinc finger protein STOP1 is critical for proton tolerance in Arabidopsis and coregulates a key gene in aluminum tolerance, Proc. Natl Acad. Sci. USA, pp.9900-9905, 2007.
DOI : 10.1073/pnas.89.22.10915

J. Liu, J. V. Magalhaes, J. Shaff, and L. Kochian, Aluminum-activated citrate and malate transporters from the MATE and ALMT families function independently to confer Arabidopsis aluminum tolerance, The Plant Journal, vol.100, issue.3, pp.389-399, 2009.
DOI : 10.2135/cropsci1994.0011183X003400060018x

URL : http://onlinelibrary.wiley.com/doi/10.1111/j.1365-313X.2008.03696.x/pdf

Y. Sawaki, STOP1 Regulates Multiple Genes That Protect Arabidopsis from Proton and Aluminum Toxicities, PLANT PHYSIOLOGY, vol.150, issue.1, pp.281-294
DOI : 10.1104/pp.108.134700

URL : http://www.plantphysiol.org/content/plantphysiol/150/1/281.full.pdf

L. V. Kochian, O. A. Hoekenga, and M. A. Pineros, HOW DO CROP PLANTS TOLERATE ACID SOILS? MECHANISMS OF ALUMINUM TOLERANCE AND PHOSPHOROUS EFFICIENCY, Annual Review of Plant Biology, vol.55, issue.1, pp.459-493, 2004.
DOI : 10.1146/annurev.arplant.55.031903.141655

J. Liu, A promoter-swap strategy between the AtALMT and AtMATE genes increased Arabidopsis aluminum resistance and improved carbon-use efficiency for aluminum resistance, The Plant Journal, vol.37, issue.2, pp.327-337
DOI : 10.1071/FP09265

M. Tokizawa, Expression, Plant Physiology, vol.167, issue.3, pp.991-1003, 2015.
DOI : 10.1104/pp.114.256552

R. Bustos, A Central Regulatory System Largely Controls Transcriptional Activation and Repression Responses to Phosphate Starvation in Arabidopsis, PLoS Genetics, vol.426, issue.9, p.1001102, 2010.
DOI : 10.1371/journal.pgen.1001102.s016

J. Y. Yan, A WRKY Transcription Factor Regulates Fe Translocation under Fe Deficiency, Plant Physiology, vol.171, issue.3, pp.2017-2027, 2016.
DOI : 10.1104/pp.16.00252

URL : http://www.plantphysiol.org/content/plantphysiol/171/3/2017.full.pdf

Z. J. Ding, J. Y. Yan, X. Y. Xu, G. X. Li, and S. J. Zheng, , regulating aluminum-induced malate secretion in Arabidopsis, The Plant Journal, vol.24, issue.5, pp.825-835, 2013.
DOI : 10.1105/tpc.112.106039

Y. Kobayashi, Characterization of the Complex Regulation of AtALMT1 Expression in Response to Phytohormones and Other Inducers, PLANT PHYSIOLOGY, vol.162, issue.2, pp.732-740, 2013.
DOI : 10.1104/pp.113.218065

H. Roschzttardtz, G. Conéjéro, C. Curie, and S. Mari, Identification of the Endodermal Vacuole as the Iron Storage Compartment in the Arabidopsis Embryo, PLANT PHYSIOLOGY, vol.151, issue.3, pp.1329-1338, 2009.
DOI : 10.1104/pp.109.144444

URL : https://hal.archives-ouvertes.fr/hal-00445498

S. Wolf, K. Hematy, and H. Hofte, Growth Control and Cell Wall Signaling in Plants, Annual Review of Plant Biology, vol.63, issue.1, pp.381-407, 2012.
DOI : 10.1146/annurev-arplant-042811-105449

URL : https://hal.archives-ouvertes.fr/hal-01053127

P. Milani, In???vivo analysis of local wall stiffness at the shoot apical meristem in Arabidopsis using atomic force microscopy, The Plant Journal, vol.334, issue.6, pp.1116-1123, 2011.
DOI : 10.1016/j.ydbio.2009.07.044

URL : https://hal.archives-ouvertes.fr/hal-01556937

A. Peaucelle, Pectin-Induced Changes in Cell Wall Mechanics Underlie Organ Initiation in Arabidopsis, Current Biology, vol.21, issue.20, pp.1720-1726, 2011.
DOI : 10.1016/j.cub.2011.08.057

URL : https://doi.org/10.1016/j.cub.2011.08.057

F. Passardi, C. Penel, and C. Dunand, Performing the paradoxical: how plant peroxidases modify the cell wall, Trends in Plant Science, vol.9, issue.11, pp.534-540
DOI : 10.1016/j.tplants.2004.09.002

K. G. Welinder, Structural diversity and transcription of class III peroxidases from Arabidopsis thaliana, European Journal of Biochemistry, vol.36, issue.24, pp.6063-6081
DOI : 10.1023/A:1005939600344

M. Tognolli, C. Penel, H. Greppin, and P. Simon, Analysis and expression of the class III peroxidase large gene family in Arabidopsis thaliana, Gene, vol.288, issue.1-2, pp.129-138, 2002.
DOI : 10.1016/S0378-1119(02)00465-1

L. Valerio, D. Meyer, M. Penel, C. Dunand, and C. , Expression analysis of the Arabidopsis peroxidase multigenic family, Phytochemistry, vol.65, issue.10, pp.1331-1342, 2004.
DOI : 10.1016/j.phytochem.2004.04.017

P. R. Rich, N. K. Wiegand, H. Blum, A. L. Moore, and J. W. Bonner, Studies on the mechanism of inhibition of redox enzymes by substituted hydroxamic acids, Biochimica et Biophysica Acta (BBA) - Enzymology, vol.525, issue.2, pp.325-337, 1978.
DOI : 10.1016/0005-2744(78)90227-9

C. Balazs, E. Kiss, A. Leövey, and N. R. Farid, THE IMMUNOSUPPRESSIVE EFFECT OF METHIMAZOLE ON CELL-MEDIATED IMMUNITY IS MEDIATED BY ITS CAPACITY TO INHIBIT PEROXIDASE AND TO SCAVENGE FREE OXYGEN RADICALS, Clinical Endocrinology, vol.115, issue.1, pp.7-16, 1986.
DOI : 10.1016/0090-1229(83)90186-1

V. Herzog and H. D. Fahimi, A new sensitive colorimetric assay for peroxidase using 3,3???-diaminobenzidine as hydrogen donor, Analytical Biochemistry, vol.55, issue.2, pp.554-562, 1973.
DOI : 10.1016/0003-2697(73)90144-9

H. Tsukagoshi, W. Busch, and P. N. Benfey, Transcriptional Regulation of ROS Controls Transition from Proliferation to Differentiation in the Root, Cell, vol.143, issue.4, pp.606-616, 2010.
DOI : 10.1016/j.cell.2010.10.020

S. Ubeda-tomas, Root growth in Arabidopsis requires gibberellin/DELLA signalling in the endodermis, Nature Cell Biology, vol.127, issue.5, pp.625-628, 2008.
DOI : 10.1038/ncb1316

R. Heidstra, D. Welch, and B. Scheres, Mosaic analyses using marked activation and deletion clones dissect Arabidopsis SCARECROW action in asymmetric cell division, Genes & Development, vol.18, issue.16, pp.1964-1969, 2004.
DOI : 10.1101/gad.305504

URL : http://genesdev.cshlp.org/content/18/16/1964.full.pdf

J. E. Vermeer, A Spatial Accommodation by Neighboring Cells Is Required for Organ Initiation in Arabidopsis, Science, vol.26, issue.3, pp.178-183, 2014.
DOI : 10.1016/j.devcel.2013.06.010

A. Pfister, Author response, eLife, vol.140, p.3115, 2014.
DOI : 10.7554/eLife.03115.020

O. Neill, E. M. Kaffman, A. Jolly, E. R. Shea, and E. K. , Regulation of PHO4 Nuclear Localization by the PHO80-PHO85 Cyclin-CDK Complex, Science, vol.271, issue.5246, pp.209-212, 1996.
DOI : 10.1126/science.271.5246.209

C. Liang, Low pH, Aluminum, and Phosphorus Coordinately Regulate Malate Exudation through GmALMT1 to Improve Soybean Adaptation to Acid Soils, PLANT PHYSIOLOGY, vol.161, issue.3, pp.1347-1361, 2013.
DOI : 10.1104/pp.112.208934

URL : http://www.plantphysiol.org/content/plantphysiol/161/3/1347.full.pdf

E. Hoffland, G. R. Findenegg, and J. A. Nelemans, Solubilization of rock phosphate by rape, Plant and Soil, vol.48, issue.2, pp.155-160, 1989.
DOI : 10.1007/BF02280175

C. A. Ticconi and S. Abel, Short on phosphate: plant surveillance and countermeasures, Trends in Plant Science, vol.9, issue.11, pp.548-555, 2004.
DOI : 10.1016/j.tplants.2004.09.003

L. Sanchez-calderon, Phosphate Starvation Induces a Determinate Developmental Program in the Roots of Arabidopsis thaliana, Plant and Cell Physiology, vol.46, issue.1, pp.174-184, 2005.
DOI : 10.1093/pcp/pci011

S. Wolf and S. Greiner, Growth control by cell wall pectins, Protoplasma, vol.99, issue.3, pp.169-175, 2012.
DOI : 10.1104/pp.99.3.1070

URL : https://hal.archives-ouvertes.fr/hal-01004180

K. G. Raghothama, PHOSPHATE ACQUISITION, Annual Review of Plant Physiology and Plant Molecular Biology, vol.50, issue.1, pp.665-693, 1999.
DOI : 10.1146/annurev.arplant.50.1.665

P. Hinsinger, Bioavailability of soil inorganic P in the rhizosphere as affected by root-induced chemical changes: a review, Plant and Soil, vol.237, issue.2, pp.173-195, 2001.
DOI : 10.1023/A:1013351617532

L. Grillet, Ascorbate Efflux as a New Strategy for Iron Reduction and Transport in Plants, Journal of Biological Chemistry, vol.221, issue.5, pp.2515-2525, 2014.
DOI : 10.1046/j.1365-313X.1999.00439.x

URL : https://hal.archives-ouvertes.fr/hal-00945537

L. Grillet, Spéciation, transport et localisation subcellulaire du fer chez Pisum sativum et Arabidopsis thaliana, Thèse de Doctorat, 2012.

T. Sasaki, A wheat gene encoding an aluminum-activated malate transporter, The Plant Journal, vol.35, issue.5, pp.645-653, 2004.
DOI : 10.1104/pp.125.3.1459

URL : http://onlinelibrary.wiley.com/doi/10.1111/j.1365-313X.2003.01991.x/pdf

M. A. Pineros, G. M. Cancado, and L. Kochian, Novel Properties of the Wheat Aluminum Tolerance Organic Acid Transporter (TaALMT1) Revealed by Electrophysiological Characterization in Xenopus Oocytes: Functional and Structural Implications, PLANT PHYSIOLOGY, vol.147, issue.4, pp.2131-2146, 2008.
DOI : 10.1104/pp.108.119636

T. Furuichi, An extracellular hydrophilic carboxy-terminal domain regulates the activity of TaALMT1, the aluminum-activated malate transport protein of wheat, The Plant Journal, vol.49, pp.47-55, 2010.
DOI : 10.1139/g05-054

S. A. Ramesh, GABA signalling modulates plant growth by directly regulating the activity of plant-specific anion transporters, Nat. Commun, vol.29, p.7879, 2015.

T. Sasaki, Y. Tsuchiya, M. Ariyoshi, P. R. Ryan, and Y. Yamamoto, A chimeric protein of aluminum-activated malate transporter generated from wheat and Arabidopsis shows enhanced response to trivalent cations, Biochimica et Biophysica Acta (BBA) - Biomembranes, vol.1858, issue.7, pp.1427-1435, 2016.
DOI : 10.1016/j.bbamem.2016.03.026

T. Sasaki, A Domain-Based Approach for Analyzing the Function of Aluminum-Activated Malate Transporters from Wheat (Triticum aestivum) and Arabidopsis thaliana in Xenopus oocytes, Plant and Cell Physiology, vol.55, issue.12, pp.2126-2138, 2014.
DOI : 10.1093/pcp/pcu143

J. Ziegler, Non-targeted profiling of semi-polar metabolites in Arabidopsis root exudates uncovers a role for coumarin secretion and lignification during the local response to phosphate limitation, Journal of Experimental Botany, vol.67, issue.5, pp.1421-1432, 2016.
DOI : 10.1093/jxb/erv539

H. G. Hall, Hardening of the sea urchin fertilization envelope by peroxidase-catalyzed phenolic coupling of tyrosines, Cell, vol.15, issue.2, pp.343-355, 1978.
DOI : 10.1016/0092-8674(78)90003-X

K. U. Torii, The Arabidopsis ERECTA Gene Encodes a Putative Receptor Protein Kinase with Extracellular Leucine-Rich Repeats, THE PLANT CELL ONLINE, vol.8, issue.4, pp.735-746, 1996.
DOI : 10.1105/tpc.8.4.735

M. Karimi, A. Depicker, and P. Hilson, Recombinational Cloning with Plant Gateway Vectors, PLANT PHYSIOLOGY, vol.145, issue.4, pp.1144-1154, 2007.
DOI : 10.1104/pp.107.106989

URL : http://www.plantphysiol.org/content/plantphysiol/145/4/1144.full.pdf

S. J. Clough and A. Bent, Floral dip: a simplified method forAgrobacterium-mediated transformation ofArabidopsis thaliana, The Plant Journal, vol.56, issue.6, pp.735-743, 1998.
DOI : 10.1105/tpc.3.1.49

URL : http://onlinelibrary.wiley.com/doi/10.1046/j.1365-313x.1998.00343.x/pdf

A. Mustroph, Profiling translatomes of discrete cell populations resolves altered cellular priorities during hypoxia in Arabidopsis, Proc. Natl Acad. Sci. USA, pp.18843-18848, 2009.
DOI : 10.1104/pp.108.117366

E. Meijering, Design and validation of a tool for neurite tracing and analysis in fluorescence microscopy images, Cytometry, vol.13, issue.2, pp.167-176, 2004.
DOI : 10.1007/978-1-4757-6465-9

R. Bahassou-benamri, Subcellular localization and interaction network of the mRNA decay activator Pat1 upon UV stress, Yeast, vol.25, issue.9, pp.353-363, 2013.
DOI : 10.1002/mas.20071

J. Misson, M. C. Thibaud, N. Bechtold, K. Raghothama, and L. Nussaume, Transcriptional regulation and functional properties of Arabidopsis Pht1;4, a high affinity transporter contributing greatly to phosphate uptake in phosphate deprived plants, Plant Molecular Biology, vol.196, issue.5, pp.727-741, 2004.
DOI : 10.1007/s11103-004-1965-5

M. Odorico, An integrated methodology for data processing in dynamic force spectroscopy of ligand???receptor binding, Ultramicroscopy, vol.107, issue.10-11, pp.887-894, 2007.
DOI : 10.1016/j.ultramic.2007.04.019

M. Lekka, Elasticity of normal and cancerous human bladder cells studied by scanning force microscopy, European Biophysics Journal, vol.28, issue.4, pp.312-316, 1999.
DOI : 10.1007/s002490050213

I. N. Sneddon, The relation between load and penetration in the axisymmetric boussinesq problem for a punch of arbitrary profile, International Journal of Engineering Science, vol.3, issue.1, pp.47-57, 1965.
DOI : 10.1016/0020-7225(65)90019-4

A. We and T. B. Alonso, CEA, cadarache) for preparing samples in AFM experiments and J. Mutterer (IBMP, Strasbourg) for Image-J M macro design; P. Milani (ENS, Lyon) and A. Peaucelle (INRA, Versailles) for advices in mounting samples in AFM experiments

J. Montillet, D. Rumeau-(-cea,-cadarache-), S. Mari, C. Curie, C. Inra et al., Castanet-Tolosan) for fruitful discussions ; J. Vermeer (IPB, Zürich) for providing the clones containing the promoters for pSCR, pCo2, pPET and pCASP1 constructs) for the phr1;phl1 double mutant USA) for the almt1 KO ;mate KO double mutant carrying the pALMT1::MATE construct; P. Benfey (Duke Univ., USA) for the upb1-1 & 35S::YFP-UP1 lines; G. Desnos for rapeseed seeds; the Nottingham Arabidopsis Stock Centre for providing Arabidopsis KO mutants; the Groupe de Recherches Appliquées en Phytotechnologie (GRAP, cadarache) for plant care. Support for the microscopy equipments was provided by the Région Provence Alpes Côte d'Azur, the Conseil Général des Bouches du Rhône, the French Ministry of Research, the European Union (European Regional Development Fund), the HélioBiotec platform, the CEA and the CNRS; the qRT-PCR machine was funded by Héliobiotech, This work was funded by CEA (APTTOX021401, APTTOX021403), Agence Nationale de la Recherche) and Investissements d'avenir (DEMETERRES). C.Ba. was supported by Agence Nationale de la Recherche (ANR-12-ADAP-0019); T.Da. was supported by Aix-Marseille-Université, CEA (APTTOX021401) and Investissements d'avenir (DEMETERRES); C.M. was supported by Investissements d'avenir (DEMETERRES); E.L. and E.D. were supported by Agence Nationale de la Recherche (ANR-09-BLAN-0118); M.B. was supported by CEA (APTTOX021401); B.P. was supported by Agence Nationale de la Recherche (ANR Retour Post-doc EmPhos PDOC00301), EMBO Long-Term Fellowship and European Reintegration Grant under the 7th Framework Program of the European Commission, 2010.