W. Martin, C. , and R. , Prokaryotic features of a nucleus-encoded enzyme. cDNA sequences for chloroplast and cytosolic glyceraldehyde-3-phosphate dehydrogenases from mustard (Sinapis alba), European Journal of Biochemistry, vol.5, issue.2, pp.323-331, 1986.
DOI : 10.1016/S0076-6879(80)65059-9

C. Corbier, S. Clermont, P. Billard, T. Skarsynski, C. Branlant et al., Probing the coenzyme specificity of glyceraldehyde-3-phosphate dehydrogenases by site-directed mutagenesis, Biochemistry, vol.29, issue.30, pp.7101-7106, 1990.
DOI : 10.1021/bi00482a022

URL : https://hal.archives-ouvertes.fr/hal-01652724

S. Clermont, C. Corbier, Y. Mely, D. Gerard, A. Wonacott et al., Determinants of coenzyme specificity in glyceraldehyde-3-phosphate dehydrogenase: Role of the acidic residue in the fingerprint region of the nucleotide binding fold, Biochemistry, vol.32, issue.38, pp.10178-10184, 1993.
DOI : 10.1021/bi00089a038

URL : https://hal.archives-ouvertes.fr/hal-01652822

S. Aymerich, G. Gonzy-treboul, and M. Steinmetz, 5'-noncoding region sacR is the target of all identified regulation affecting the levansucrase gene in Bacillus subtilis., Journal of Bacteriology, vol.166, issue.3, pp.993-998, 1986.
DOI : 10.1128/jb.166.3.993-998.1986

A. Guérot-fleury, N. Frandsen, and P. Stragier, Plasmids for ectopic integration in Bacillus subtilis, Gene, vol.180, issue.1-2, pp.57-61, 1996.
DOI : 10.1016/S0378-1119(96)00404-0

J. H. Miller, A Short Course in Bacterial Genetics, pp.72-74, 1992.

T. A. Kunkel, K. Bebenek, and J. Mcclary, [6] Efficient site-directed mutagenesis using uracil-containing DNA, Methods Enzymol, vol.204, pp.125-139, 1991.
DOI : 10.1016/0076-6879(91)04008-C

F. Talfournier, N. Colloc-'h, J. P. Mornon, and G. Branlant, Comparative study of the catalytic domain of phosphorylating glyceraldehyde-3-phosphate dehydrogenases from bacteria and archaea via essential cysteine probes and site-directed mutagenesis, European Journal of Biochemistry, vol.252, issue.3, pp.447-457, 1998.
DOI : 10.1046/j.1432-1327.1998.2520447.x

R. K. Scopes, Measurement of protein by spectrophotometry at 205 nm, Analytical Biochemistry, vol.59, issue.1, pp.277-282, 1974.
DOI : 10.1016/0003-2697(74)90034-7

S. Boschi-muller, S. Azza, D. Pollastro, C. Corbier, and G. Branlant, and Phosphorylating Glyceraldehyde-3-phosphate Dehydrogenase, Journal of Biological Chemistry, vol.198, issue.24, pp.15106-15112, 1997.
DOI : 10.1093/protein/6.1.37

URL : https://hal.archives-ouvertes.fr/hal-01690824

C. Didierjean, S. Rahuel-clermon, B. Vitoux, O. Dideberg, G. Branlant et al., A crystallographic comparison between mutated glyceraldehyde-3-phosphate dehydrogenases from Bacillus stearothermophilus complexed with either NAD+ or NADP+, Journal of Molecular Biology, vol.268, issue.4, pp.739-759, 1997.
DOI : 10.1006/jmbi.1997.0998

URL : https://hal.archives-ouvertes.fr/hal-01681405

B. S. Schlä-epfer and P. Zuber, Cloning and sequencing of the genes encoding glyceraldehyde-3-phosphate dehydrogenase, phosphoglycerate kinase and triosephosphate isomerase (gap operon) from mesophilic Bacillus megaterium: comparison with corresponding sequences from thermophilic Bacillus stearothermophilus, Gene, vol.122, issue.1, pp.53-62, 1992.
DOI : 10.1016/0378-1119(92)90031-J

W. Schreiber and P. Dü-rre, The glyceraldehyde-3-phosphate dehydrogenase of Clostridium acetobutylicum: isolation and purification of the enzyme, and sequencing and localization of the gap gene within a cluster of other glycolytic genes, Microbiology, vol.145, issue.8, pp.1839-1847, 1999.
DOI : 10.1099/13500872-145-8-1839

B. J. Eikmanns, Identification, sequence analysis, and expression of a Corynebacterium glutamicum gene cluster encoding the three glycolytic enzymes glyceraldehyde-3-phosphate dehydrogenase, 3-phosphoglycerate kinase, and triosephosphate isomerase., Journal of Bacteriology, vol.174, issue.19, pp.6076-6086, 1992.
DOI : 10.1128/jb.174.19.6076-6086.1992

T. Kaneko, S. Sato, H. Kotani, and S. Tabata, Sequence Analysis of the Genome of the Unicellular Cyanobacterium Synechocystis sp. Strain PCC6803. II. Sequence Determination of the Entire Genome and Assignment of Potential Protein-coding Regions, DNA Research, vol.3, issue.3, pp.109-136, 1996.
DOI : 10.1093/dnares/3.3.109

C. Garrigues, P. Loubière, N. D. Lindley, and M. Bousquet, Control of the shift from homolactic acid to mixed-acid fermentation in Lactococcus lactis: predominant role of the NADH/NAD+ ratio., Journal of Bacteriology, vol.179, issue.17, pp.5282-5287, 1997.
DOI : 10.1128/jb.179.17.5282-5287.1997

H. Dominguez, C. Rollin, A. Guyonvarch, J. L. Guerquin-kern, M. Cocaign-bousquet et al., Carbon-flux distribution in the central metabolic pathways of Corynebacterium glutamicum during growth on fructose, European Journal of Biochemistry, vol.254, issue.1, pp.96-102, 1998.
DOI : 10.1046/j.1432-1327.1998.2540096.x

T. Schä-fer and P. Schönheit, Gluconeogenesis from pyruvate in the hyperthermophilic archaeon Pyrococcus furiosus: involvement of reactions of the Embden-Meyerhof pathway, Archives of Microbiology, vol.172, issue.4, pp.354-363, 1993.
DOI : 10.1007/BF00290918

J. Van-der-oost, G. Schut, S. W. Kengen, W. R. Hagen, M. Thomm et al., Represents a Novel Site of Glycolytic Regulation, Journal of Biological Chemistry, vol.62, issue.43, pp.28149-28154, 1998.
DOI : 10.1006/jmbi.1994.1217