V. Arantes and J. N. Saddler, Access to cellulose limits the efficiency of enzymatic hydrolysis: the role of amorphogenesis, Biotechnology for Biofuels, vol.3, issue.1, 2010.
DOI : 10.1186/1754-6834-3-4

Y. Zhang, S. Legay, Y. Barriere, V. Mechin, and D. Legland, Color Quantification of Stained Maize Stem Section Describes Lignin Spatial Distribution within the Whole Stem, Journal of Agricultural and Food Chemistry, vol.61, issue.13, pp.3186-3192, 2013.
DOI : 10.1021/jf400912s

URL : https://hal.archives-ouvertes.fr/hal-01001079

J. Xue, M. Bosch, and J. P. Knox, Heterogeneity and Glycan Masking of Cell Wall Microstructures in the Stems of Miscanthus x giganteus, and Its Parents M. sinensis and M. sacchariflorus, PLoS ONE, vol.8, issue.11, p.82114, 2013.
DOI : 10.1371/journal.pone.0082114.s001

X. Meng and A. J. Ragauskas, Recent advances in understanding the role of cellulose accessibility in enzymatic hydrolysis of lignocellulosic substrates, Current Opinion in Biotechnology, vol.27, pp.150-158, 2014.
DOI : 10.1016/j.copbio.2014.01.014

M. E. Himmel, Biomass Recalcitrance: Engineering Plants and Enzymes for Biofuels Production, Science, vol.315, issue.5813, pp.804-807, 2007.
DOI : 10.1126/science.1137016

S. P. Chundawat, Multi-scale visualization and characterization of lignocellulosic plant cell wall deconstruction during thermochemical pretreatment, Energy & Environmental Science, vol.99, issue.3, pp.973-984, 2011.
DOI : 10.1002/bit.21805

H. Inouye, Multiscale deconstruction of molecular architecture in corn stover, Scientific Reports, vol.154, issue.108, 2014.
DOI : 10.1016/j.apcata.2011.05.029

S. Singh, B. A. Simmons, and K. P. Vogel, Visualization of biomass solubilization and cellulose regeneration during ionic liquid pretreatment of switchgrass, Biotechnology and Bioengineering, vol.99, issue.9, pp.68-75, 2009.
DOI : 10.1557/mrs2008.77

M. A. Hansen, J. B. Kristensen, C. Felby, and H. Jørgensen, Pretreatment and enzymatic hydrolysis of wheat straw (Triticum aestivum L.) ??? The impact of lignin relocation and plant tissues on enzymatic accessibility, Bioresource Technology, vol.102, issue.3, pp.2804-2811, 2011.
DOI : 10.1016/j.biortech.2010.10.030

G. Siqueira, A. M. Milagres, W. Carvalho, G. Koch, and A. Ferraz, Topochemical distribution of lignin and hydroxycinnamic acids in sugar-cane cell walls and its correlation with the enzymatic hydrolysis of polysaccharides, Biotechnology for Biofuels, vol.4, issue.1, 2011.
DOI : 10.1016/S0960-8524(00)00024-9

N. Belmokhtar, A. Habrant, N. L. Ferreira, and B. Chabbert, Changes in Phenolics Distribution After Chemical Pretreatment and Enzymatic Conversion of Miscanthus ?? giganteus Internode, BioEnergy Research, vol.222, issue.1, pp.506-518, 2013.
DOI : 10.1007/s00425-005-1537-1

URL : https://hal.archives-ouvertes.fr/hal-01268105

N. Gierlinger, In Situ FT-IR Microscopic Study on Enzymatic Treatment of Poplar Wood Cross-Sections, Biomacromolecules, vol.9, issue.8, pp.2194-2201, 2008.
DOI : 10.1021/bm800300b

URL : https://hal.archives-ouvertes.fr/hal-00964620

N. Gierlinger, Revealing changes in molecular composition of plant cell walls on the micron-level by Raman mapping and vertex component analysis (VCA), Frontiers in Plant Science, vol.762, issue.1, p.306, 2014.
DOI : 10.1016/j.aca.2012.11.043

J. Ma, X. Zhang, X. Zhou, and F. Xu, Revealing the Changes in Topochemical Characteristics of Poplar Cell Wall During Hydrothermal Pretreatment, BioEnergy Research, vol.101, issue.20, pp.1358-1368, 2014.
DOI : 10.1016/j.biortech.2010.05.006

B. S. Donohoe, Detecting cellulase penetration into corn stover cell walls by immuno-electron microscopy, Biotechnology and Bioengineering, vol.94, issue.4, pp.480-489, 2009.
DOI : 10.1111/j.1438-8677.1993.tb00701.x

M. A. Hansen, Enzyme affinity to cell types in wheat straw (Triticum aestivum L.) before and after hydrothermal pretreatment, Biotechnology for Biofuels, vol.6, issue.1, p.54, 2013.
DOI : 10.1007/BF01248568

J. S. Luterbacher, J. M. Moran-mirabal, E. W. Burkholder, and L. P. Walker, Modeling enzymatic hydrolysis of lignocellulosic substrates using fluorescent confocal microscopy II: Pretreated biomass, Biotechnology and Bioengineering, vol.18, issue.1, pp.32-42, 2015.
DOI : 10.1007/s10570-011-9506-2

L. A. Donaldson, H. W. Kroese, S. J. Hill, and R. A. Franich, Detection of wood cell wall porosity using small carbohydrate molecules and confocal fluorescence microscopy, Journal of Microscopy, vol.48, issue.4, pp.228-236, 2015.
DOI : 10.1007/s00226-014-0671-y

G. Paës, A. Habrant, J. Ossemond, and B. Chabbert, Exploring accessibility of pretreated poplar cell walls by measuring dynamics of fluorescent probes, Biotechnology for Biofuels, vol.26, issue.1, p.15, 2017.
DOI : 10.1105/tpc.114.130443

A. Varnai, L. Huikko, J. Pere, M. Siika-aho, and L. Viikari, Synergistic action of xylanase and mannanase improves the total hydrolysis of softwood, Bioresource Technology, vol.102, issue.19, pp.9096-9104, 2011.
DOI : 10.1016/j.biortech.2011.06.059

D. Navarro, Fast solubilization of recalcitrant cellulosic biomass by the basidiomycete fungus Laetisaria arvalisinvolves successive secretion of oxidative and hydrolytic enzymes, Biotechnology for Biofuels, vol.10, issue.1, p.143, 2014.
DOI : 10.1186/1475-2859-10-113

G. Vaaje-kolstad, An Oxidative Enzyme Boosting the Enzymatic Conversion of Recalcitrant Polysaccharides, Science, vol.280, issue.6001, pp.219-222, 2010.
DOI : 10.1016/j.tibtech.2008.02.004

R. J. Quinlan, Insights into the oxidative degradation of cellulose by a copper metalloenzyme that exploits biomass components, Proceedings of the National Academy of Sciences, vol.60, issue.Pt 12 Pt 1, pp.15079-15084, 2011.
DOI : 10.1107/S0907444904019158

J. W. Agger, Discovery of LPMO activity on hemicelluloses shows the importance of oxidative processes in plant cell wall degradation, Proceedings of the National Academy of Sciences, vol.5, issue.1, pp.6287-6292, 2014.
DOI : 10.1186/1754-6834-5-79

K. S. Johansen, Discovery and industrial applications of lytic polysaccharide mono-oxygenases, Biochemical Society Transactions, vol.44, issue.1, pp.143-149, 2016.
DOI : 10.1042/BST20150204

A. Levasseur, E. Drula, V. Lombard, P. M. Coutinho, and B. Henrissat, Expansion of the enzymatic repertoire of the CAZy database to integrate auxiliary redox enzymes, Biotechnology for Biofuels, vol.6, issue.1, p.41, 2013.
DOI : 10.1186/1471-2148-12-186

URL : https://hal.archives-ouvertes.fr/hal-01268121

M. Fanuel, The Podospora anserina lytic polysaccharide monooxygenase PaLPMO9H catalyzes oxidative cleavage of diverse plant cell wall matrix glycans, Biotechnology for Biofuels, vol.9, issue.24, p.63, 2017.
DOI : 10.1002/pmic.200900708

URL : https://hal.archives-ouvertes.fr/hal-01499750

M. Eibinger, Cellulose Surface Degradation by a Lytic Polysaccharide Monooxygenase and Its Effect on Cellulase Hydrolytic Efficiency, Journal of Biological Chemistry, vol.289, issue.52, pp.35929-35938, 2014.
DOI : 10.1016/S0927-7757(98)00404-X

U. F. Rodriguez-zuniga, Lignocellulose pretreatment technologies affect the level of enzymatic cellulose oxidation by LPMO, Green Chemistry, vol.102, issue.5, pp.2896-2903, 2015.
DOI : 10.1016/j.biortech.2010.11.063

C. Bennati-granier, Substrate specificity and regioselectivity of fungal AA9 lytic polysaccharide monooxygenases secreted by Podospora anserina, Biotechnology for Biofuels, vol.89, issue.1, p.90, 2015.
DOI : 10.1034/j.1399-3054.1993.890101.x

URL : https://hal.archives-ouvertes.fr/hal-01202474

S. Cadoux, Implications of productivity and nutrient requirements on greenhouse gas balance of annual and perennial bioenergy crops, GCB Bioenergy, vol.39, issue.4, pp.425-438, 2014.
DOI : 10.1016/j.biombioe.2012.01.020

URL : https://hal.archives-ouvertes.fr/hal-01173307

E. A. Heaton, Managing a second-generation crop portfolio through sustainable intensification: Examples from the USA and the EU, Biofuels, Bioproducts and Biorefining, vol.329, issue.5993, pp.702-714, 2013.
DOI : 10.1126/science.1189268

I. Lewandowski, Progress on Optimizing Miscanthus Biomass Production for the European Bioeconomy: Results of the EU FP7 Project OPTIMISC, Frontiers in Plant Science, vol.54, 2016.
DOI : 10.1016/j.rser.2015.10.040

M. Galbe and G. Zacchi, Pretreatment: The key to efficient utilization of lignocellulosic materials, Biomass and Bioenergy, vol.46, pp.70-78, 2012.
DOI : 10.1016/j.biombioe.2012.03.026

R. Biswas, H. Uellendahl, and B. Ahring, Wet Explosion: a Universal and Efficient Pretreatment Process for Lignocellulosic Biorefineries, BioEnergy Research, vol.102, issue.132, pp.1-16, 2015.
DOI : 10.1016/j.biortech.2011.05.039

G. J. Rocha, A. R. Goncalves, S. C. Nakanishi, V. M. Nascimento, and V. F. Silva, Pilot scale steam explosion and diluted sulfuric acid pretreatments: Comparative study aiming the sugarcane bagasse saccharification, Industrial Crops and Products, vol.74, pp.810-816, 2015.
DOI : 10.1016/j.indcrop.2015.05.074

J. B. Li, G. Henriksson, and G. Gellerstedt, Lignin depolymerization/repolymerization and its critical role for delignification of aspen wood by steam explosion, Bioresource Technology, vol.98, issue.16, pp.3061-3068, 2007.
DOI : 10.1016/j.biortech.2006.10.018

T. Auxenfans, D. Crônier, B. Chabbert, and G. Paës, Understanding the structural and chemical changes of plant biomass following steam explosion pretreatment, Biotechnology for Biofuels, vol.26, issue.1, p.36, 2017.
DOI : 10.1105/tpc.114.130443

URL : https://hal.archives-ouvertes.fr/hal-01602522

L. E. Wise, M. Murphy, and A. A. Addieco, Chlorite holocellulose, its fractionation and bearing on summative wood analysis and on studies on the hemicelluloses, Paper Trade Journal, vol.122, pp.11-19, 1946.

R. Kumar, F. Hu, C. A. Hubbell, A. J. Ragauskas, and C. E. Wyman, Comparison of laboratory delignification methods, their selectivity, and impacts on physiochemical characteristics of cellulosic biomass, Bioresource Technology, vol.130, pp.372-381, 2013.
DOI : 10.1016/j.biortech.2012.12.028

D. E. Akin, Plant cell wall aromatics: influence on degradation of biomass, Biofuels, Bioproducts and Biorefining, vol.25, issue.132, pp.288-303, 2008.
DOI : 10.1300/J395v01n01_03

G. Tawil, In Situ Tracking of Enzymatic Breakdown of Starch Granules by Synchrotron UV Fluorescence Microscopy, Analytical Chemistry, vol.83, issue.3, pp.989-993, 2011.
DOI : 10.1021/ac1027512

F. Jamme, 3D Imaging of Enzymes Working in Situ, Analytical Chemistry, vol.86, issue.11, pp.5265-5270, 2014.
DOI : 10.1021/ac403699h

URL : https://hal.archives-ouvertes.fr/hal-01571540

R. H. Farahi, Plasticity, elasticity, and adhesion energy of plant cell walls: nanometrology of lignin loss using atomic force microscopy, Scientific Reports, vol.7, issue.1, p.152, 2017.
DOI : 10.1557/JMR.1992.0613

URL : https://hal.archives-ouvertes.fr/hal-01509662

L. Tetard, using mode synthesizing atomic force microscopy, Nanotechnology, vol.22, issue.46, p.465702, 2011.
DOI : 10.1088/0957-4484/22/46/465702

URL : https://hal.archives-ouvertes.fr/hal-00696022

D. Navarro, Automated assay for screening the enzymatic release of reducing sugars from micronized biomass, Microbial Cell Factories, vol.9, issue.1, p.58, 2010.
DOI : 10.1186/1475-2859-9-58

URL : https://hal.archives-ouvertes.fr/hal-00939699

F. Jamme, Synchrotron UV Fluorescence Microscopy Uncovers New Probes in Cells and Tissues, Microscopy and Microanalysis, vol.91, issue.05, pp.507-514, 2010.
DOI : 10.1366/0003702953965597

URL : https://hal.archives-ouvertes.fr/hal-00609593