S. Schuster and C. Hilgetag, On elementary flux modes in biochemical reaction systems at steady state, Journal of Biological Systems, vol.2, issue.2, pp.165-182, 1994.

S. Schuster, D. A. Fell, and T. Dandekar, A general definition of metabolic pathways useful for systematic organization and analysis of complex metabolic networks, Nat Biotechnol, vol.18, pp.326-332, 2000.

B. L. Clarke, Complete set of steady states for the general stoichiometric dynamical system, J Chem Phys, vol.75, issue.10, pp.4970-4979, 1981.

J. Schwender, F. Goffman, J. Ohlrogge, and Y. Shachar-hill, Rubisco without the Calvin cycle improves the carbon efficiency of developing green seeds, Nature, vol.432, issue.7018, pp.779-782, 2004.

N. Vijayasankaran, R. Carlson, and F. Srienc, Metabolic pathway structures for recombinant protein synthesis in Escherichia coli, Appl Microbiol Biotechnol, vol.68, issue.6, pp.737-746, 2005.

M. Prauße, S. Schäuble, R. Guthke, and S. Schuster, Computing the various pathways of penicillin synthesis and their molar yields, Biotechnol Bioeng, 2015.

M. Durot, P. Y. Bourguignon, and V. Schachter, Genome-scale models of bacterial metabolism: reconstruction and applications, FEMS Microbiol Rev, vol.33, issue.1, pp.164-190, 2009.

E. J. O'brien, J. M. Monk, and B. O. Palsson, Using genome-scale models to predict biological capabilities, Cell, vol.161, issue.5, pp.971-987, 2015.

V. Acuña, F. Chierichetti, V. Lacroix, A. Marchetti-spaccamela, M. F. Sagot et al., Modes and cuts in metabolic networks: Complexity and algorithms, BioSystems, vol.95, pp.51-60, 2009.

V. Acuña, A. Marchetti-spaccamela, M. F. Sagot, and L. Stougie, A note on the complexity of finding and enumerating elementary modes, BioSystems, vol.99, pp.210-214, 2010.

D. Jevremovic, C. Trinh, F. Srienc, C. P. Sosa, and D. Boley, Parallelization of nullspace algorithm for the computation of metabolic pathways, Parallel Computing, vol.37, issue.6-7, pp.261-278, 2011.

V. Kamp, A. Schuster, and S. , Metatool 5.0: Fast and flexible elementary modes analysis, Bioinformatics, vol.22, pp.1930-1931, 2006.

S. Klamt, J. Saez-rodriguez, and G. E. , Structural and functional analysis of cellular networks with CellNe-tAnalyzer, BMC Systems Biology, vol.1, issue.1, 2007.

M. Terzer and J. Stelling, Large-scale computation of elementary flux modes with bit pattern trees, Bioinformatics, vol.24, issue.19, pp.2229-2235, 2008.

P. Atkins and J. De-paula, Physical Chemistry, 2014.

M. Ataman and V. Hatzimanikatis, Heading in the right direction: thermodynamics-based network analysis and pathway engineering. Current opinion in biotechnology, vol.36, pp.176-182, 2015.

A. Hoppe, S. Hoffmann, and H. G. Holzhütter, Including metabolite concentrations into flux balance analysis: thermodynamic realizability as a constraint on flux distributions in metabolic networks, BMC Syst Biol, vol.1, issue.23, 2007.

A. Hoppe, S. Hoffmann, A. Gerasch, C. Gille, and H. G. Holzhütter, FASIMU: flexible software for flux-balance computation series in large metabolic networks, BMC Bioinformatics, vol.12, p.28, 2011.

A. Kümmel, S. Panke, and M. Heinemann, Systematic assignment of thermodynamic constraints in metabolic network models, BMC Bioinformatics, 2006.

D. Beard, S. Liang, and H. Qian, Energy balance for analysis of complex metabolic networks, Biophysical Journal, vol.83, issue.1, pp.79-86, 2002.

D. A. Beard, E. Babson, E. Curtis, and H. , Thermodynamic constraints for biochemical networks, Journal of Theoretical Biology, vol.228, issue.3, pp.327-333, 2004.

C. S. Henry, L. J. Broadbelt, and V. Hatzimanikatis, Thermodynamics-based metabolic flux analysis, Biophysical journal, vol.92, issue.5, pp.1792-1805, 2007.

S. J. Jol, A. Kümmel, M. Terzer, J. Stelling, and M. Heinemann, System-level insights into yeast metabolism by thermodynamic analysis of elementary flux modes, PLoS Computational Biology, vol.8, issue.3, 2012.

S. Gudmundsson and I. Thiele, Computationally efficient flux variability analysis, BMC Bioinformatics, vol.11, issue.1, p.489, 2010.

A. Kümmel, S. Panke, and M. Heinemann, Putative regulatory sites unraveled by network-embedded thermodynamic analysis of metabolome data, Molecular Systems Biology, vol.2, 2006.

A. Muller and A. Bockmayr, Flux modules in metabolic networks, J Math Biol, vol.69, pp.1151-1179, 2014.

M. P. Gerstl, D. E. Ruckerbauer, D. Mattanovich, C. Jungreuthmayer, and J. Zanghellini, Metabolomics integrated elementary flux mode analysis in large metabolic networks, Sci Rep, vol.8930, issue.5, 2015.

M. P. Gerstl, C. Jungreuthmayer, and J. Zanghellini, tEFMA: computing thermodynamically feasible elementary flux modes in metabolic networks, Bioinformatics, 2015.

M. P. Gerstl, C. Jungreuthmayer, S. Muller, and J. Zanghellini, Which sets of elementary flux modes form thermodynamically feasible flux distributions?, FEBS J, 2016.

A. Flamholz, E. Noor, A. Bar-even, and M. R. , eQuilibrator-the biochemical thermodynamics calculator, Nucleic acids research, vol.40, pp.770-775, 2012.

E. Noor, A. Bar-even, A. Flamholz, Y. Lubling, D. Davidi et al., An integrated open framework for thermodynamics of reactions that combines accuracy and coverage, Bioinformatics, vol.28, issue.15, pp.2037-2044, 2012.

E. Noor, H. S. Haraldsdottir, R. Milo, and R. M. Fleming, Consistent estimation of Gibbs energy using component contributions, PLoS Comput Biol, vol.9, issue.7, p.1003098, 2013.

R. G. Forsythe, P. D. Karp, and M. L. Mavrovouniotis, Estimation of equilibrium constants using automated group contribution methods, Comput Appl Biosci, vol.13, issue.5, pp.537-543, 1997.

M. D. Jankowski, C. S. Henry, L. J. Broadbelt, and V. Hatzimanikatis, Group contribution method for thermodynamic analysis of complex metabolic networks, Biophysical journal, vol.95, issue.3, pp.1487-1499, 2008.

K. Rother, S. Hoffmann, S. Bulik, A. Hoppe, J. Gasteiger et al., IGERS: inferring Gibbs energy changes of biochemical reactions from reaction similarities, Biophysical journal, vol.98, issue.11, pp.2478-2486, 2010.

S. Schuster and R. Heinrich, Minimization of intermediate concentrations as a suggested optimality principle for biochemical networks, J Math Biol, vol.29, pp.425-442, 1991.

E. Noor, A. Bar-even, E. Flamholz, . Reznik, W. Liebermeister et al., Pathway thermodynamics highlights kinetic obstacles in central metabolism, PLoS Comput Biol, vol.10, issue.2, p.1003483, 2014.

M. Michal and D. Schomburg, Biochemical Pathways An Atlas of Biochemistry and Molecular Biology ( Second Edition), 1994.

A. Ghorbaniaghdam, O. Henry, and M. Jolicoeur, A kinetic-metabolic model based on cell energetic state: study of CHO cell behavior under Na-butyrate stimulation, Bioprocess and Biosystems Engineering, vol.36, pp.496-487, 2013.

J. Robitaille, J. Chen, and M. Jolicoeur, A single dynamic metabolic model can describe mAb producing CHO cell batch and fed-batch cultures on different culture media, PLoS ONE, vol.10, issue.9, 2015.

Z. Sheikholeslami, M. Jolicoeur, and O. Henry, Probing the metabolism of an inducible mammalian expression system using extracellular isotopomer analysis, Journal of Biotechnology, vol.164, pp.469-478, 2013.

A. Varma and B. O. Palsson, Metabolic Flux Balancing: basic concepts, scientific and practical use, Nature Biotechnology, vol.12, issue.10, pp.994-998, 1994.

J. D. Orth, I. Thiele, and B. Ø. Palsson, What is flux balance analysis? Nature biotechnology, vol.28, pp.245-248, 2010.

C. Reder, Metabolic control theory: a structural approach, J theor Biol, vol.135, pp.175-201, 1988.

D. Gale, The Theory of Linear Economic Models, 1960.

J. Farkas, How important is thermodynamics for identifying elementary flux modes?, J Reine Angew Math, vol.124, pp.1-27, 1902.

P. One and . Doi, , 2017.

K. Fukuda and A. Prodon, Double Description Method Revisited, Combinatorics and Computer Science, vol.1120, pp.91-111, 1996.

T. S. Motzkin, H. Raiffa, G. L. Thompson, and R. M. Thrall, The double description method, Contributions to the Theory of Games II, 1953.

A. Funahashi, Y. Matsuoka, A. Jouraku, M. Morohashi, N. Kikuchi et al., CellDesigner 3.5: a versatile modeling tool for biochemical networks, Proceedings of the IEEE, vol.96, issue.8, pp.1254-1265, 2008.