C. Alonso and J. Pernthaler, Roseobacter and SAR11 dominate microbial glucose uptake in coastal North Sea waters, Environmental Microbiology, vol.46, issue.11, pp.2022-2052, 2006.
DOI : 10.1016/S0967-0645(02)00069-3

A. Aminot and R. Kérouel, Dosage Automatique Des Nutriments Dans Les Eaux Marines : Méthodes En Flux Continu, 2007.

N. Ankrah, T. Lane, and C. Budinoff, Draft Genome Sequence of Sulfitobacter sp. CB2047, a Member of the Roseobacter Clade of Marine Bacteria, Isolated from an Emiliania huxleyi Bloom, Genome Announcements, vol.4, issue.2, pp.1125-1139, 2014.
DOI : 10.1038/nrmicro1595

N. Bano and J. Hollibaugh, Phylogenetic Composition of Bacterioplankton Assemblages from the Arctic Ocean, Applied and Environmental Microbiology, vol.68, issue.2, pp.505-523, 2002.
DOI : 10.1128/AEM.68.2.505-518.2002

S. Beier, A. Rivers, and M. Moran, The transcriptional response of prokaryotes to phytoplankton-derived dissolved organic matter in seawater, Environmental Microbiology, vol.48, issue.10, pp.3466-80, 2015.
DOI : 10.1099/00207713-48-2-339

R. Benner and M. Strom, A critical evaluation of the analytical blank associated with DOC measurements by high-temperature catalytic oxidation, Marine Chemistry, vol.41, issue.1-3, pp.153-60, 1993.
DOI : 10.1016/0304-4203(93)90113-3

E. Bertrand, J. Mccrow, and A. Moustafa, Phytoplankton???bacterial interactions mediate micronutrient colimitation at the coastal Antarctic sea ice edge, Proceedings of the National Academy of Sciences, vol.35, issue.12, pp.9938-9981, 2015.
DOI : 10.1038/nmeth.1358

S. Blain, B. Quéguiner, and A. L. , Effect of natural iron fertilization on carbon sequestration in the Southern Ocean, Nature, vol.100, issue.7139, pp.1070-1074, 2007.
DOI : 10.1007/s10967-005-0062-9

URL : https://hal.archives-ouvertes.fr/hal-00169813

P. Boyd, A. Watson, and C. Law, A mesoscale phytoplankton bloom in the polar Southern Ocean stimulated by iron fertilization, Nature, vol.132, issue.6805, pp.695-702, 2000.
DOI : 10.1016/S0031-0182(97)00061-8

T. Brinkhoff, H. Giebel, and M. Simon, Diversity, ecology, and genomics of the Roseobacter clade: a short overview, Archives of Microbiology, vol.57, issue.6, pp.531-540, 2008.
DOI : 10.1099/00207713-51-3-1059

A. Buchan, J. González, and M. Moran, Overview of the Marine Roseobacter Lineage, Applied and Environmental Microbiology, vol.71, issue.10, pp.5665-77, 2005.
DOI : 10.1128/AEM.71.10.5665-5677.2005

A. Buchan, G. Lecleir, and C. Gulvik, Master recyclers: features and functions of bacteria associated with phytoplankton blooms, Nature Reviews Microbiology, vol.76, issue.10, pp.686-98, 2014.
DOI : 10.1016/j.seares.2012.07.011

B. Campbell and D. Kirchman, Bacterial diversity, community structure and potential growth rates along an estuarine salinity gradient, The ISME Journal, vol.58, issue.1, pp.210-230, 2013.
DOI : 10.4319/lo.2004.49.5.1620

J. Caporaso, J. Kuczynski, and J. Stombaugh, QIIME allows analysis of high-throughput community sequencing data, Nature Methods, vol.8, issue.5, pp.335-341, 2010.
DOI : 10.1038/nmeth.f.303

P. Carini, L. Steindler, and S. Beszteri, Nutrient requirements for growth of the extreme oligotroph ???Candidatus Pelagibacter ubique??? HTCC1062 on a defined medium, The ISME Journal, vol.171, issue.3, pp.592-602, 2013.
DOI : 10.1007/BF02620943

M. Church, Resource Control of Bacterial Dynamics in the Sea Microbial Ecology of the Oceans, pp.335-82, 2008.

M. Church, D. Hutchins, and H. Ducklow, Limitation of Bacterial Growth by Dissolved Organic Matter and Iron in the Southern Ocean, Applied and Environmental Microbiology, vol.66, issue.2, pp.455-66, 2000.
DOI : 10.1128/AEM.66.2.455-466.2000

J. Cole, S. Findlay, and M. Pace, Bacterial production in fresh and saltwater ecosystems: a cross-system overview, Marine Ecology Progress Series, vol.43, pp.1-10, 1988.
DOI : 10.3354/meps043001

M. Cottrell and D. Kirchman, Natural Assemblages of Marine Proteobacteria and Members of the Cytophaga-Flavobacter Cluster Consuming Low- and High-Molecular-Weight Dissolved Organic Matter, Applied and Environmental Microbiology, vol.66, issue.4, pp.1692-1699, 2000.
DOI : 10.1128/AEM.66.4.1692-1697.2000

M. Datta, E. Sliwerska, and J. Gore, Microbial interactions lead to rapid micro-scale successions on model marine particles, Nature Communications, vol.56, p.11965, 2016.
DOI : 10.1016/j.mimet.2003.10.011

T. Delmont, K. Hammar, and H. Ducklow, Phaeocystis antarctica blooms strongly influence bacterial community structures in the Amundsen Sea polynya, Frontiers in Microbiology, vol.35, issue.93, p.646, 2014.
DOI : 10.1046/j.1529-8817.1999.3561322.x

M. Dumont, A. Rapaport, and J. Harmand, Observers for microbial ecology - How including molecular data into bioprocess modeling?, 2008 16th Mediterranean Conference on Control and Automation, pp.1381-1387, 2008.
DOI : 10.1109/MED.2008.4602004

URL : https://hal.archives-ouvertes.fr/hal-00857833

B. Durham, S. Sharma, and H. Luo, Cryptic carbon and sulfur cycling between surface ocean plankton, Proceedings of the National Academy of Sciences, vol.9, issue.1, pp.453-460, 2015.
DOI : 10.1128/JB.00569-09

R. Edgar, MUSCLE: multiple sequence alignment with high accuracy and high throughput, Nucleic Acids Research, vol.32, issue.5, pp.1792-1799, 2004.
DOI : 10.1093/nar/gkh340

R. Edgar, Search and clustering orders of magnitude faster than BLAST, Bioinformatics, vol.22, issue.19, pp.2460-2461, 2010.
DOI : 10.1093/bioinformatics/btl158

B. Fernández-gómez, M. Richter, and M. Schüler, Ecology of marine Bacteroidetes: a comparative genomics approach, The ISME Journal, vol.59, issue.5, pp.1026-1063, 2013.
DOI : 10.1038/nature09530

I. Ferrera, J. Gasol, and M. Sebastián, ABSTRACT, Applied and Environmental Microbiology, vol.77, issue.21
DOI : 10.1128/AEM.00208-11

M. Fourquez, S. Beier, and E. Jongmans, Uptake of Leucine, Chitin, and Iron by Prokaryotic Groups during Spring Phytoplankton Blooms Induced by Natural Iron Fertilization off Kerguelen Island (Southern Ocean), Frontiers in Marine Science, vol.40, p.256, 2016.
DOI : 10.3354/ame040241

J. Fuhrman, I. Hewson, and M. Schwalbach, Annually reoccurring bacterial communities are predictable from ocean conditions, Proceedings of the National Academy of Sciences, vol.14, issue.2, pp.13104-13113, 2006.
DOI : 10.3354/ame014113

URL : http://www.pnas.org/content/103/35/13104.full.pdf

R. Fukuda, H. Ogawa, and T. Nagata, Direct determination of carbon and nitrogen contents of natural bacterial assemblages in marine environments, Appl Environ Microbiol, vol.64, pp.3352-3360, 1998.

G. Gentile, L. Giuliano, D. Auria, and G. , Study of bacterial communities in Antarctic coastal waters by a combination of 16S rRNA and 16S rDNA sequencing, Environmental Microbiology, vol.55, issue.8, pp.2150-61, 2006.
DOI : 10.1099/ijs.0.02424-0

J. Ghiglione and A. Murray, Pronounced summer to winter differences and higher wintertime richness in coastal Antarctic marine bacterioplankton, Environmental Microbiology, vol.45, issue.3, pp.617-646, 2012.
DOI : 10.1016/S0967-0637(98)00015-6

S. Gifford, J. Becker, and O. Sosa, ABSTRACT, mBio, vol.7, issue.6, pp.1279-1295, 2016.
DOI : 10.1128/mBio.01279-16

J. Gilbert, J. Steele, and J. Caporaso, Defining seasonal marine microbial community dynamics, The ISME Journal, vol.73, issue.2, pp.298-308, 2012.
DOI : 10.1128/AEM.00062-07

URL : http://www.nature.com/ismej/journal/v6/n2/pdf/ismej2011107a.pdf

S. Giovannoni, SAR11 Bacteria: The Most Abundant Plankton in the Oceans, Annual Review of Marine Science, vol.9, issue.1, pp.231-55, 2017.
DOI : 10.1146/annurev-marine-010814-015934

J. Goldman, D. Caron, and M. Dennett, Regulation of gross growth efficiency and ammonium regeneration in bacteria by substrate C: N ratio1, Limnology and Oceanography, vol.32, issue.6, pp.1239-1252, 1987.
DOI : 10.4319/lo.1987.32.6.1239

P. Gómez?pereira, M. Schüler, and B. Fuchs, Genomic content of uncultured Bacteroidetes from contrasting oceanic provinces in the North Atlantic Ocean, Environmental Microbiology, vol.299, issue.1, pp.52-66, 2012.
DOI : 10.1126/science.1080029

J. González, B. Fernández-gómez, and A. Fernàndez-guerra, Genome analysis of the proteorhodopsin-containing marine bacterium Polaribacter sp, MED152 (Flavobacteria)

J. González, R. Simó, and R. Massana, Bacterial Community Structure Associated with a Dimethylsulfoniopropionate-Producing North Atlantic Algal Bloom, Applied and Environmental Microbiology, vol.66, issue.10, pp.4237-4246, 2000.
DOI : 10.1128/AEM.66.10.4237-4246.2000

D. Hansell, Recalcitrant Dissolved Organic Carbon Fractions, Annual Review of Marine Science, vol.5, issue.1, pp.421-445, 2013.
DOI : 10.1146/annurev-marine-120710-100757

N. Hertkorn, C. Ruecker, and M. Meringer, High-precision frequency measurements: indispensable tools at the core of the molecular-level analysis of complex systems, Analytical and Bioanalytical Chemistry, vol.3, issue.7155, pp.1311-1338, 2007.
DOI : 10.2136/sssaj2005.0107dup

P. Hu, E. Dubinsky, and A. Probst, oil plume reveals substrate specialization within a complex community of hydrocarbon degraders, Proceedings of the National Academy of Sciences, vol.412, issue.413, pp.7432-7439, 2017.
DOI : 10.1093/bioinformatics/btl446

L. Kerkhof, M. Voytek, and R. Sherrell, Variability in bacterial community structure during upwelling in the coastal ocean, Hydrobiologia, vol.401, pp.139-187, 1999.
DOI : 10.1007/978-94-011-4201-4_11

H. Kim and H. Ducklow, Analysis for Dynamics of Heterotrophic Bacteria in an Antarctic Coastal Ecosystem: Variability and Physical and Biogeochemical Forcings, Front Mar Sci, vol.3, p.214, 2002.

J. Kim, S. Park, and Z. Quan, in a polynya in Amundsen Sea, Antarctica, Environmental Microbiology, vol.5, issue.6, pp.1566-78, 2014.
DOI : 10.1016/0924-7963(94)90017-5

N. Kimes, M. López-pérez, and E. Ausó, RNA sequencing provides evidence for functional variability between naturally co-existing Alteromonas macleodii lineages, BMC Genomics, vol.15, issue.1, p.938, 2014.
DOI : 10.1093/bioinformatics/btp352

D. Kirchman, Growth Rates of Microbes in the Oceans, Annual Review of Marine Science, vol.8, issue.1, pp.285-309, 2016.
DOI : 10.1146/annurev-marine-122414-033938

D. Kirchman, B. Meon, and M. Cottrell, Carbon versus iron limitation of bacterial growth in the California upwelling regime, Limnology and Oceanography, vol.45, issue.8, pp.1681-1689, 2000.
DOI : 10.4319/lo.2000.45.8.1681

S. Kleindienst, M. Seidel, and K. Ziervogel, Chemical dispersants can suppress the activity of natural oil-degrading microorganisms, Proceedings of the National Academy of Sciences, vol.6, issue.2, pp.14900-14905, 2015.
DOI : 10.1016/j.gca.2014.05.038

S. Krause, T. Johnson, and Y. Karunaratne, Lanthanide-dependent cross-feeding of methane-derived carbon is linked by microbial community interactions, Proceedings of the National Academy of Sciences, vol.32, issue.8, pp.358-63, 2017.
DOI : 10.1038/nprot.2013.099

S. Kumar, G. Stecher, and K. Tamura, MEGA7: Molecular Evolutionary Genetics Analysis Version 7.0 for Bigger Datasets, Molecular Biology and Evolution, vol.10, issue.7, pp.1870-1874, 2016.
DOI : 10.1093/bioinformatics/17.9.821

M. Laghdass, P. Catala, and J. Caparros, High Contribution of SAR11 to Microbial Activity in the North West Mediterranean Sea, Microbial Ecology, vol.309, issue.2, pp.324-357, 2012.
DOI : 10.1126/science.1114057

M. Landa, S. Blain, and U. Christaki, Shifts in bacterial community composition associated with increased carbon cycling in a mosaic of phytoplankton blooms, The ISME Journal, vol.64, issue.1, pp.39-50, 2016.
DOI : 10.1016/j.dsr2.2007.06.020

M. Landa, M. Cottrell, and D. Kirchman, Changes in bacterial diversity in response to dissolved organic matter supply in a continuous culture experiment, Aquatic Microbial Ecology, vol.69, issue.2, pp.157-68, 2013.
DOI : 10.3354/ame01632

M. Landa, M. Cottrell, and D. Kirchman, Phylogenetic and structural response of heterotrophic bacteria to dissolved organic matter of different chemical composition in a continuous culture study, Environmental Microbiology, vol.7, issue.6, 2014.
DOI : 10.1038/ismej.2012.176

S. Langenheder, E. Lindström, and L. Tranvik, Weak coupling between community composition and functioning of aquatic bacteria, Limnology and Oceanography, vol.50, issue.3, pp.957-67, 2005.
DOI : 10.4319/lo.2005.50.3.0957

S. Langenheder, E. Lindström, and L. Tranvik, Structure and Function of Bacterial Communities Emerging from Different Sources under Identical Conditions, Applied and Environmental Microbiology, vol.72, issue.1, pp.212-232, 2006.
DOI : 10.1128/AEM.72.1.212-220.2006

T. Lankiewicz, M. Cottrell, and D. Kirchman, Growth rates and rRNA content of four marine bacteria in pure cultures and in the Delaware estuary, The ISME Journal, vol.9, issue.4, pp.823-855, 2016.
DOI : 10.1038/nature11921

F. Lauro, D. Mcdougald, and T. Thomas, The genomic basis of trophic strategy in marine bacteria, Proceedings of the National Academy of Sciences, vol.41, issue.1, pp.15527-15560, 2009.
DOI : 10.1146/annurev.mi.41.100187.000325

T. Li, N. V. Doronina, and E. Ivanova, Vitamin B12-independent strains of Methylophaga marina isolated from Red Sea algae, Microbiology, vol.26, issue.6, pp.75-81, 2007.
DOI : 10.1016/0168-6496(96)00038-4

H. Luo, M. Cs?ros, and A. Hughes, Evolution of Divergent Life History Strategies in Marine Alphaproteobacteria, mBio, vol.4, issue.4, pp.373-386, 2013.
DOI : 10.1128/mBio.00373-13

C. Luria, L. Amaral-zettler, and H. Ducklow, Seasonal Succession of Free-Living Bacterial Communities in Coastal Waters of the Western Antarctic Peninsula, Frontiers in Microbiology, vol.14, issue.805, p.1731, 2016.
DOI : 10.18637/jss.v014.i06

C. Luria, L. Amaral-zettler, and H. Ducklow, Seasonal Shifts in Bacterial Community Responses to Phytoplankton-Derived Dissolved Organic Matter in the Western Antarctic Peninsula, Frontiers in Microbiology, vol.49, p.2117, 2017.
DOI : 10.1016/j.marchem.2015.08.001

R. Malmstrom, M. Cottrell, and H. Elifantz, Biomass Production and Assimilation of Dissolved Organic Matter by SAR11 Bacteria in the Northwest Atlantic Ocean, Applied and Environmental Microbiology, vol.71, issue.6, pp.2979-86, 2005.
DOI : 10.1128/AEM.71.6.2979-2986.2005

R. Malmstrom, R. Kiene, and M. Cottrell, Contribution of SAR11 Bacteria to Dissolved Dimethylsulfoniopropionate and Amino Acid Uptake in the North Atlantic Ocean, Applied and Environmental Microbiology, vol.70, issue.7, pp.4129-4164, 2004.
DOI : 10.1128/AEM.70.7.4129-4135.2004

J. Martiny, B. Bohannan, and J. Brown, Microbial biogeography: putting microorganisms on the map, Nature Reviews Microbiology, vol.70, issue.2, pp.102-114, 2006.
DOI : 10.1007/978-1-4615-6968-8_3

B. Methé, K. Nelson, and J. Deming, The psychrophilic lifestyle as revealed by the genome sequence of Colwellia psychrerythraea 34H through genomic and proteomic analyses, Proceedings of the National Academy of Sciences, vol.2, issue.7, pp.10913-10921, 2005.
DOI : 10.1101/gr.1180903

DOI : 10.1016/B978-0-12-460482-7.50023-3

M. Moran, R. Belas, and M. Schell, Ecological Genomics of Marine Roseobacters, Applied and Environmental Microbiology, vol.73, issue.14, pp.4559-69, 2007.
DOI : 10.1128/AEM.02580-06

J. Morris, S. Papoulis, and R. Lenski, COEXISTENCE OF EVOLVING BACTERIA STABILIZED BY A SHARED BLACK QUEEN FUNCTION, Evolution, vol.68, issue.10, pp.2960-71, 2014.
DOI : 10.1111/evo.12485

R. Morris, M. Rappé, and S. Connon, SAR11 clade dominates ocean surface bacterioplankton communities, Nature, vol.345, issue.6917, pp.806-816, 2002.
DOI : 10.1038/345060a0

X. Mou, S. Sun, and R. Edwards, Bacterial carbon processing by generalist species in the coastal ocean, Nature, vol.71, issue.7179, pp.708-719, 2008.
DOI : 10.1101/SQB.1957.022.01.039

D. Needham and J. Fuhrman, Pronounced daily succession of phytoplankton, archaea and bacteria following a spring bloom, Nature Microbiology, vol.54, issue.4, p.16005, 2016.
DOI : 10.1101/gr.1239303

J. Nelson, S. Boehme, and C. Reimers, Temporal patterns of microbial community structure in the Mid-Atlantic Bight, FEMS Microbiology Ecology, vol.71, issue.3, pp.484-93, 2008.
DOI : 10.1016/S0168-6496(00)00064-7

J. Neufeld, H. Schäfer, and M. Cox, Stable-isotope probing implicates Methylophaga spp and novel Gammaproteobacteria in marine methanol and methylamine metabolism, The ISME Journal, vol.53, issue.6, pp.480-91, 2007.
DOI : 10.1038/ismej.2007.65

A. Neumann, J. Balmonte, and M. Berger, ecotypes, Environmental Microbiology, vol.7, issue.Suppl. 1, pp.3857-68, 2015.
DOI : 10.1038/ismej.2012.176

R. Newton, L. Griffin, and K. Bowles, Genome characteristics of a generalist marine bacterial lineage, The ISME Journal, vol.10, issue.6, pp.784-98, 2010.
DOI : 10.1038/ismej.2008.115

A. Novick and L. Szilard, Description of the Chemostat, Science, vol.112, issue.2920, pp.715-721, 1950.
DOI : 10.1126/science.112.2920.715

I. Obernosterer, U. Christaki, and D. Lefèvre, Rapid bacterial mineralization of organic carbon produced during a phytoplankton bloom induced by natural iron fertilization in the Southern Ocean, Deep Sea Research Part II: Topical Studies in Oceanography, vol.55, issue.5-7, pp.777-89, 2008.
DOI : 10.1016/j.dsr2.2007.12.005

I. Obernosterer, M. Fourquez, and S. Blain, Fe and C co-limitation of heterotrophic bacteria in the naturally fertilized region off the Kerguelen Islands, Biogeosciences, vol.12, issue.6, pp.1983-92, 2015.
DOI : 10.5194/bg-12-1983-2015

URL : https://hal.archives-ouvertes.fr/hal-01207645

B. Pedler, L. Aluwihare, and F. Azam, Single bacterial strain capable of significant contribution to carbon cycling in the surface ocean, Proceedings of the National Academy of Sciences, vol.4, issue.3, pp.7202-7209, 2014.
DOI : 10.1038/ismej.2009.116

J. Pinhassi, H. Havskum, and F. Peters, Changes in Bacterioplankton Composition under Different Phytoplankton Regimens, Applied and Environmental Microbiology, vol.70, issue.11, pp.6753-66, 2004.
DOI : 10.1128/AEM.70.11.6753-6766.2004

B. Quéguiner, Iron fertilization and the structure of planktonic communities in high nutrient regions of the Southern Ocean, Deep Sea Research Part II: Topical Studies in Oceanography, vol.90, pp.43-54, 2013.
DOI : 10.1016/j.dsr2.2012.07.024

C. Quince, A. Lanzen, and R. Davenport, Removing Noise From Pyrosequenced Amplicons, BMC Bioinformatics, vol.12, issue.1, p.38, 2011.
DOI : 10.1186/1471-2105-12-38

URL : https://bmcbioinformatics.biomedcentral.com/track/pdf/10.1186/1471-2105-12-38?site=bmcbioinformatics.biomedcentral.com

A. Rapaport, D. Dochain, and J. Harmand, Long run coexistence in the chemostat with multiple species, Journal of Theoretical Biology, vol.257, issue.2
DOI : 10.1016/j.jtbi.2008.11.015

URL : https://hal.archives-ouvertes.fr/hal-00554535

M. Redmond and D. Valentine, Natural gas and temperature structured a microbial community response to the Deepwater Horizon oil spill, Proceedings of the National Academy of Sciences, vol.10, issue.8, pp.20292-20299, 2012.
DOI : 10.1186/1471-2105-10-171

L. Riemann, G. Steward, and F. Azam, Dynamics of Bacterial Community Composition and Activity during a Mesocosm Diatom Bloom, Applied and Environmental Microbiology, vol.66, issue.2, pp.578-87, 2000.
DOI : 10.1128/AEM.66.2.578-587.2000

B. Rink, S. Seeberger, and T. Martens, Effects of phytoplankton bloom in a coastal ecosystem on the composition of bacterial communities, Aquatic Microbial Ecology, vol.48, pp.47-60, 2007.
DOI : 10.3354/ame048047

I. Salter, P. Galand, and S. Fagervold, Seasonal dynamics of active SAR11 ecotypes in the oligotrophic Northwest Mediterranean Sea, The ISME Journal, vol.9, issue.2, pp.347-60, 2015.
DOI : 10.1111/j.1462-2920.2007.01324.x

H. Sarmento, C. Morana, and J. Gasol, Bacterioplankton niche partitioning in the use of phytoplankton-derived dissolved organic carbon: quantity is more important than quality, The ISME Journal, vol.42, issue.11
DOI : 10.2307/1940354

B. Satinsky, B. Crump, and C. Smith, Microspatial gene expression patterns in the Amazon River Plume, Proceedings of the National Academy of Sciences, vol.6, issue.5, pp.11085-90, 2014.
DOI : 10.1371/journal.pone.0019725

P. Schloss, S. Westcott, and T. Ryabin, Introducing mothur: Open-Source, Platform-Independent, Community-Supported Software for Describing and Comparing Microbial Communities, Applied and Environmental Microbiology, vol.75, issue.23, pp.7537-7578, 2009.
DOI : 10.1128/AEM.01541-09

N. Selje, M. Simon, and T. Brinkhoff, A newly discovered Roseobacter cluster in temperate and polar oceans, Nature, vol.19, issue.6973, pp.445-453, 2004.
DOI : 10.1016/S0723-2020(96)80069-5

M. Simon, S. Billerbeck, and D. Kessler, Bacterioplankton communities in the Southern Ocean: composition and growth response to various substrate regimes, Aquatic Microbial Ecology, vol.68, issue.1, pp.13-28, 2012.
DOI : 10.3354/ame01597

J. Sjöstedt, M. Pontarp, and T. Tinta, Reduced diversity and changed bacterioplankton community composition do not affect utilization of dissolved organic matter in the Adriatic Sea, Aquatic Microbial Ecology, vol.71, issue.1, pp.15-24, 2013.
DOI : 10.3354/ame01660

M. Sogin, H. Morrison, and J. Huber, Microbial diversity in the deep sea and the underexplored "rare biosphere", Proceedings of the National Academy of Sciences, vol.18, issue.11, pp.12115-12135, 2006.
DOI : 10.1093/bioinformatics/18.11.1546

S. Sowell, L. Wilhelm, and A. Norbeck, Transport functions dominate the SAR11 metaproteome at low-nutrient extremes in the Sargasso Sea, The ISME Journal, vol.9, issue.1, pp.93-105, 2009.
DOI : 10.1029/2004GB002445

G. Speeckaert, A. V. Borges, and W. Champenois, Annual cycle of dimethylsulfoniopropionate (DMSP) and dimethylsulfoxide (DMSO) related to phytoplankton succession in the Southern North Sea, Science of The Total Environment, vol.622, issue.623, pp.622-623362, 2018.
DOI : 10.1016/j.scitotenv.2017.11.359

T. Straza, H. Ducklow, and A. Murray, Abundance and single-cell activity of bacterial groups in Antarctic coastal waters, Limnology and Oceanography, vol.55, issue.6, pp.2526-2562, 2010.
DOI : 10.4319/lo.2010.55.6.2526

J. Sun, L. Steindler, and J. Thrash, One Carbon Metabolism in SAR11 Pelagic Marine Bacteria, PLoS ONE, vol.75, issue.8, p.23973, 2011.
DOI : 10.1371/journal.pone.0023973.s006

S. Sunagawa, L. Coelho, and S. Chaffron, Structure and function of the global ocean microbiome, Science, vol.73, issue.16, p.1261359, 2015.
DOI : 10.1128/AEM.00062-07

URL : https://hal.archives-ouvertes.fr/hal-01233742

Y. Tada, A. Taniguchi, and Y. Sato-takabe, Growth and succession patterns of major phylogenetic groups of marine bacteria during a mesocosm diatom bloom, Journal of Oceanography, vol.3, issue.4, pp.509-528, 2012.
DOI : 10.1046/j.1462-2920.2001.00196.x

H. Teeling, B. Fuchs, and D. Becher, Substrate-Controlled Succession of Marine Bacterioplankton Populations Induced by a Phytoplankton Bloom, Science, vol.73, issue.7, pp.608-619, 2012.
DOI : 10.1128/AEM.02559-06

E. Teira, S. Martínez?garcía, and C. Lønborg, Growth rates of different phylogenetic bacterioplankton groups in a coastal upwelling system, Environmental Microbiology Reports, vol.67, issue.6, pp.545-54, 2009.
DOI : 10.1016/S0723-2020(11)80121-9

S. Thiele, B. Fuchs, and N. Ramaiah, ABSTRACT, Applied and Environmental Microbiology, vol.78, issue.24, pp.8803-8815, 2012.
DOI : 10.1128/AEM.01814-12

URL : https://hal.archives-ouvertes.fr/hal-01377942

L. Thompson, C. Field, and T. Romanuk, Patterns of ecological specialization among microbial populations in the Red Sea and diverse oligotrophic marine environments, Ecology and Evolution, vol.494, issue.6, pp.1780-97, 2013.
DOI : 10.1038/nature11921

L. Tremblay, J. Caparros, and K. Leblanc, Origin and fate of particulate and dissolved organic matter in a naturally iron-fertilized region of the Southern Ocean, Biogeosciences, vol.12, issue.2, pp.607-628, 2015.
DOI : 10.5194/bg-12-607-2015

URL : https://hal.archives-ouvertes.fr/hal-01234611

H. Tripp, The unique metabolism of SAR11 aquatic bacteria, Journal of Microbiology, vol.28, issue.2, pp.147-53, 2013.
DOI : 10.3354/ame028141

H. Tripp, J. Kitner, and M. Schwalbach, SAR11 marine bacteria require exogenous reduced sulphur for growth, Nature, vol.29, issue.7188, pp.741-745, 2008.
DOI : 10.1038/nature06776

Q. Wang, G. Garrity, and J. Tiedje, Naive Bayesian Classifier for Rapid Assignment of rRNA Sequences into the New Bacterial Taxonomy, Applied and Environmental Microbiology, vol.73, issue.16, pp.5261-5268, 2007.
DOI : 10.1128/AEM.00062-07

B. Wawrik, L. Kerkhof, and J. Kukor, Effect of Different Carbon Sources on Community Composition of Bacterial Enrichments from Soil, Applied and Environmental Microbiology, vol.71, issue.11, pp.6776-83, 2005.
DOI : 10.1128/AEM.71.11.6776-6783.2005

N. West, I. Obernosterer, and O. Zemb, Major differences of bacterial diversity and activity inside and outside of a natural iron-fertilized phytoplankton bloom in the Southern Ocean, Environmental Microbiology, vol.46, issue.3, pp.738-56, 2008.
DOI : 10.1046/j.1462-2920.2001.00196.x

URL : https://hal.archives-ouvertes.fr/hal-01205626

M. Wietz, B. Wemheuer, and H. Simon, Bacterial community dynamics during polysaccharide degradation at contrasting sites in the Southern and Atlantic Oceans, Environmental Microbiology, vol.7, issue.10, pp.3822-3853, 2015.
DOI : 10.1038/ismej.2012.176

D. Wilkins, S. Yau, and T. Williams, Key microbial drivers in Antarctic aquatic environments, FEMS Microbiology Reviews, vol.32, issue.3, pp.303-338, 2013.
DOI : 10.1016/S0967-0637(98)00015-6

T. Williams, D. Wilkins, and E. Long, The role of planktonic Flavobacteria in processing algal organic matter in coastal East Antarctica revealed using metagenomics and metaproteomics

R. Wolcott, V. Gontcharova, and Y. Sun, Evaluation of the bacterial diversity among and within individual venous leg ulcers using bacterial tag-encoded FLX and Titanium amplicon pyrosequencing and metagenomic approaches, BMC Microbiology, vol.9, issue.1, p.226, 2009.
DOI : 10.1186/1471-2180-9-226

P. Xing, R. Hahnke, and F. Unfried, Niches of two polysaccharide-degrading Polaribacter