K. Chater, Recent advances in understanding Streptomyces, F1000Research, vol.5, p.2795, 2016.
DOI : 10.12688/f1000research.9534.1

S. D. Bentley, Complete genome sequence of the model actinomycete Streptomyces coelicolor A3(2), Nature, vol.85, issue.6885, pp.141-147, 2002.
DOI : 10.1073/pnas.85.8.2444

H. Ikeda, Complete genome sequence and comparative analysis of the industrial microorganism Streptomyces avermitilis, Nature Biotechnology, vol.28, issue.5, pp.526-531, 2003.
DOI : 10.1093/nar/28.1.263

F. Choulet, Evolution of the Terminal Regions of the Streptomyces Linear Chromosome, Molecular Biology and Evolution, vol.17, issue.12, pp.2361-2369, 2006.
DOI : 10.1093/bioinformatics/17.9.847

URL : https://hal.archives-ouvertes.fr/hal-00112247

A. Thibessard and P. Leblond, Subtelomere Plasticity in the Bacterium Streptomyces. in Subtelomeres, pp.243-258978, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01478830

G. Fischer, B. Decaris, and P. Leblond, Occurrence of deletions, associated with genetic instability in Streptomyces ambofaciens, is independent of the linearity of the chromosomal DNA., Journal of Bacteriology, vol.179, issue.14, pp.4553-4558, 1997.
DOI : 10.1128/jb.179.14.4553-4558.1997

S. Inoue, K. Higashiyama, T. Uchida, K. Hiratsu, and H. Kinashi, by Nonhomologous Recombination of Deletion Ends, Bioscience, Biotechnology, and Biochemistry, vol.67, issue.5, pp.1101-1108, 2003.
DOI : 10.1271/bbb.67.1101

G. Fischer, T. Wenner, B. Decaris, and P. Leblond, Chromosomal arm replacement generates a high level of intraspecific polymorphism in the terminal inverted repeats of the linear chromosomal DNA of Streptomyces ambofaciens, Proc. Natl. Acad. Sci. USA 95, pp.14296-14301, 1998.
DOI : 10.1016/S0959-437X(97)80046-9

URL : https://hal.archives-ouvertes.fr/hal-01625341

T. Uchida, M. Miyawaki, and H. Kinashi, Chromosomal Arm Replacement in Streptomyces griseus, Journal of Bacteriology, vol.185, issue.3, pp.1120-1124, 2003.
DOI : 10.1128/JB.185.3.1120-1124.2003

URL : http://jb.asm.org/content/185/3/1120.full.pdf

T. Wenner, End-to-end fusion of linear deleted chromosomes initiates a cycle of genome instability in Streptomyces ambofaciens, Molecular Microbiology, vol.88, issue.1955, pp.411-425, 2003.
DOI : 10.1016/S0092-8674(00)81898-X

URL : https://hal.archives-ouvertes.fr/hal-01659028

P. Leblond, P. Demuyter, J. M. Simonet, and B. Decaris, Genetic instability and hypervariability in Streptomyces ambofaciens: towards an understanding of a mechanism of genome plasticity, Molecular Microbiology, vol.95, issue.5, pp.707-714, 1990.
DOI : 10.1016/0014-5793(87)81547-8

URL : https://hal.archives-ouvertes.fr/hal-01658674

S. Reports and |. , 8:5272 | DOI:10.1038/s41598-018-23622-w 12 Chromosomal deletion and rearrangement in Streptomyces glaucescens, J. Bacteriol, vol.173, pp.3531-3538, 1991.

K. Yanai, T. Murakami, and M. Bibb, Amplification of the entire kanamycin biosynthetic gene cluster during empirical strain improvement of Streptomyces kanamyceticus, Proc. Natl. Acad. Sci. USA 103, pp.9661-9666, 2006.
DOI : 10.1128/AAC.28.4.521

M. Yamasaki and H. Kinashi, Two Chimeric Chromosomes of Streptomyces coelicolor A3(2) Generated by Single Crossover of the Wild-Type Chromosome and Linear Plasmid SCP1, Journal of Bacteriology, vol.186, issue.19, pp.6553-6559, 2004.
DOI : 10.1128/JB.186.19.6553-6559.2004

S. Pandza, Recombination between the linear plasmid pPZG101 and the linear chromosome of Streptomyces rimosus can lead to exchange of ends, Molecular Microbiology, vol.76, issue.6, pp.1165-1176, 1998.
DOI : 10.1016/0378-1119(85)90120-9

E. P. Rocha, E. Cornet, and B. Michel, Comparative and Evolutionary Analysis of the Bacterial Homologous Recombination Systems, PLoS Genetics, vol.188, issue.2, p.15, 2005.
DOI : 0378-1097(2000)188[0209:COGAGC]2.0.CO;2

T. Huang and C. W. Chen, A recA Null Mutation May Be Generated in Streptomyces coelicolor, Journal of Bacteriology, vol.188, issue.19, pp.6771-6779, 2006.
DOI : 10.1128/JB.00951-06

L. Zhang, The adnAB Locus, Encoding a Putative Helicase-Nuclease Activity, Is Essential in Streptomyces, Journal of Bacteriology, vol.196, issue.14, pp.2701-2708, 2014.
DOI : 10.1128/JB.01513-14

URL : https://hal.archives-ouvertes.fr/hal-01474715

G. Hoff, C. Bertrand, E. Piotrowski, A. Thibessard, and P. Leblond, Implication of RuvABC and RecG in homologous recombination in Streptomyces ambofaciens, Research in Microbiology, vol.168, issue.1, pp.26-35, 2017.
DOI : 10.1016/j.resmic.2016.07.003

URL : https://hal.archives-ouvertes.fr/hal-01552147

B. Michel and S. J. Sandler, ABSTRACT, Journal of Bacteriology, vol.199, issue.13, p.199, 2017.
DOI : 10.1128/JB.00102-17

URL : https://hal.archives-ouvertes.fr/hal-01099512

M. S. Glickman, Double-Strand DNA Break Repair in Mycobacteria, Microbiology Spectrum, vol.2, issue.5, 2014.
DOI : 10.1128/microbiolspec.MGM2-0024-2013

L. Aravind and E. Koonin, Prokaryotic Homologs of the Eukaryotic DNA-End-Binding Protein Ku, Novel Domains in the Ku Protein and Prediction of a Prokaryotic Double-Strand Break Repair System, Genome Research, vol.11, issue.8, pp.1365-1374, 2001.
DOI : 10.1101/gr.181001

A. J. Doherty, S. P. Jackson, and G. Weller, Identification of bacterial homologues of the Ku DNA repair proteins, FEBS Letters, vol.17, issue.3, pp.186-188, 2001.
DOI : 10.1093/nar/27.17.3494

G. R. Weller, Identification of a DNA Nonhomologous End-Joining Complex in Bacteria, Science, vol.297, issue.5587, pp.1686-1689, 2002.
DOI : 10.1126/science.1074584

M. Della, Mycobacterial Ku and Ligase Proteins Constitute a Two-Component NHEJ Repair Machine, Science, vol.306, issue.5696, pp.683-685, 2004.
DOI : 10.1126/science.1099824

G. Hoff, Multiple and Variable NHEJ-Like Genes Are Involved in Resistance to DNA Damage in Streptomyces ambofaciens, Frontiers in Microbiology, vol.285, issue.e15, p.1901, 2016.
DOI : 10.1074/jbc.M109.073874

URL : https://hal.archives-ouvertes.fr/hal-01521993

R. Gupta, D. Barkan, G. Redelman-sidi, S. Shuman, and M. S. Glickman, Mycobacteria exploit three genetically distinct DNA double-strand break repair pathways, Molecular Microbiology, vol.134, issue.2, pp.316-330, 2011.
DOI : 10.1016/j.cell.2008.08.037

URL : http://onlinelibrary.wiley.com/doi/10.1111/j.1365-2958.2010.07463.x/pdf

R. Chayot, B. Montagne, D. Mazel, and M. Ricchetti, An end-joining repair mechanism in Escherichia coli, Proc. Natl. Acad. Sci. USA, pp.2141-2146, 2010.
DOI : 10.1038/ncb1623

URL : http://www.pnas.org/content/107/5/2141.full.pdf

L. Deriano and D. B. Roth, Modernizing the Nonhomologous End-Joining Repertoire: Alternative and Classical NHEJ Share the Stage, Annual Review of Genetics, vol.47, issue.1, pp.433-455, 2013.
DOI : 10.1146/annurev-genet-110711-155540

URL : https://hal.archives-ouvertes.fr/pasteur-01471700

S. Sinha, Microhomology-mediated end joining induces hypermutagenesis at breakpoint junctions, PLOS Genetics, vol.95, issue.21, p.1006714, 2017.
DOI : 10.1371/journal.pgen.1006714.s035

URL : https://doi.org/10.1371/journal.pgen.1006714

A. Thibessard, Complete genome sequence of Streptomyces ambofaciens ATCC 23877, the spiramycin producer, Journal of Biotechnology, vol.214, pp.117-118, 2015.
DOI : 10.1016/j.jbiotec.2015.09.020

URL : https://hal.archives-ouvertes.fr/hal-01258341

B. Aigle, Genome mining of Streptomyces ambofaciens, Journal of Industrial Microbiology & Biotechnology, vol.7, issue.3, pp.251-263, 2014.
DOI : 10.1371/journal.pone.0034064

URL : https://hal.archives-ouvertes.fr/hal-01475037

M. Xu, Deciphering the streamlined genome of Streptomyces xiamenensis 318 as the producer of the anti-fibrotic drug candidate xiamenmycin, Scientific Reports, vol.25, issue.1, p.18977, 2016.
DOI : 10.1006/meth.2001.1262

R. P. Anand, S. T. Lovett, and J. Haber, Break-Induced DNA Replication, Cold Spring Harbor Perspectives in Biology, vol.5, issue.12, p.10397, 2013.
DOI : 10.1101/cshperspect.a010397

URL : http://cshperspectives.cshlp.org/content/5/12/a010397.full.pdf

A. So, T. Le-guen, B. S. Lopez, and J. Guirouilh-barbat, Genomic rearrangements induced by unscheduled DNA double strand breaks in somatic mammalian cells, The FEBS Journal, vol.13, issue.15, pp.2324-2344, 2017.
DOI : 10.1038/nrc3537

P. Leblond, Hypervariability, a new phenomenon of genetic instability, related to DNA amplification in Streptomyces ambofaciens., Journal of Bacteriology, vol.171, issue.1, pp.419-423, 1989.
DOI : 10.1128/jb.171.1.419-423.1989

URL : https://hal.archives-ouvertes.fr/hal-01658652

B. Aigle, An amplifiable and deletable locus of Streptomyces ambofaciens RP181110 contains a very large gene homologous to polyketide synthase genes, Microbiology, vol.142, issue.10, pp.2815-2824, 1996.
DOI : 10.1099/13500872-142-10-2815

URL : https://hal.archives-ouvertes.fr/hal-01659577

L. Laureti, Identification of a bioactive 51-membered macrolide complex by activation of a silent polyketide synthase in Streptomyces ambofaciens, Proc. Natl. Acad. Sci. USA, pp.6258-6263, 2011.
DOI : 10.1021/bi0268706

J. N. Volff, P. Viell, and J. Altenbuchner, Artificial circularization of the chromosome with concomitant deletion of its terminal inverted repeats enhances genetic instability and genome rearrangement in Streptomyces lividans, Molecular and General Genetics MGG, vol.253, issue.6, pp.753-760, 1997.
DOI : 10.1007/s004380050380

E. Hazkani-covo, R. M. Zeller, and W. Martin, Molecular Poltergeists: Mitochondrial DNA Copies (numts) in Sequenced Nuclear Genomes, PLoS Genetics, vol.26, issue.2, p.1000834, 2010.
DOI : 10.1371/journal.pgen.1000834.t001

M. Ricchetti, C. Fairhead, and B. Dujon, Mitochondrial DNA repairs double-strand breaks in yeast chromosomes, Nature, vol.10, issue.6757, pp.96-100, 1999.
DOI : 10.1002/yea.320101310

M. Ricchetti, B. Dujon, and C. Fairhead, Distance from the Chromosome End Determines the Efficiency of Double Strand Break Repair in Subtelomeres of Haploid Yeast, Journal of Molecular Biology, vol.328, issue.4, pp.847-862, 2003.
DOI : 10.1016/S0022-2836(03)00315-2

O. Popa, E. Hazkani-covo, G. Landan, W. Martin, and T. Dagan, Directed networks reveal genomic barriers and DNA repair bypasses to lateral gene transfer among prokaryotes, Genome Research, vol.21, issue.4, pp.599-609, 2011.
DOI : 10.1101/gr.115592.110

URL : http://genome.cshlp.org/content/21/4/599.full.pdf

S. Pinnert-sindico, A new species of Streptomyces producing antibiotics Streptomyces ambofaciens n. sp., cultural characteristics, Ann. Inst. Pasteur, vol.87, pp.702-707, 1954.

A. Jacquier and B. Dujon, An intron-encoded protein is active in a gene conversion process that spreads an intron into a mitochondrial gene, Cell, vol.41, issue.2, pp.383-394, 1985.
DOI : 10.1016/S0092-8674(85)80011-8

A. Thibessard, C. Bertrand, J. Hiblot, E. Piotrowski, and P. Leblond, Construction of pDYN6902, a new Streptomyces integrative expression vector designed for cloning sequences interfering with Escherichia coli viability, Plasmid, vol.82, pp.43-49, 2015.
DOI : 10.1016/j.plasmid.2015.10.003

URL : https://hal.archives-ouvertes.fr/hal-01258339

M. L. Chiu, TipAL Protein and Its Role in Regulating Gene Expression, Journal of Biological Chemistry, vol.267, issue.29, pp.20578-20586, 1999.
DOI : 10.1093/nar/14.4.1565

N. Ali, P. R. Herron, M. C. Evans, and P. J. Dyson, Osmotic regulation of the Streptomyces lividans thiostrepton-inducible promoter, ptipA, Microbiology, vol.141, issue.2, pp.381-390, 2002.
DOI : 10.1099/13500872-141-11-2779

M. A. Gregory, R. Till, and M. C. Smith, Integration Site for Streptomyces Phage ??BT1 and Development of Site-Specific Integrating Vectors, Journal of Bacteriology, vol.185, issue.17, pp.5320-5323, 2003.
DOI : 10.1128/JB.185.17.5320-5323.2003

B. Gust, G. L. Challis, K. Fowler, T. Kieser, and K. F. Chater, PCR-targeted Streptomyces gene replacement identifies a protein domain needed for biosynthesis of the sesquiterpene soil odor geosmin, Proc. Natl. Acad. Sci. USA, pp.1541-1546, 2003.
DOI : 10.1126/science.277.5333.1820