K. J. Niklas, Plant allometry: the scaling of form and process, 1994.

D. Barthélémy and Y. Caraglio, Plant Architecture: A Dynamic, Multilevel and Comprehensive Approach to Plant Form, Structure and Ontogeny, Annals of Botany, vol.7, issue.C, pp.375-407, 2007.
DOI : 10.1007/BF01928366

L. B. Leopold, Trees and streams: The efficiency of branching patterns, Journal of Theoretical Biology, vol.31, issue.2, pp.339-354, 1971.
DOI : 10.1016/0022-5193(71)90192-5

T. A. Mcmahon and R. E. Kronauer, Tree structures: Deducing the principle of mechanical design, Journal of Theoretical Biology, vol.59, issue.2, pp.443-466, 1976.
DOI : 10.1016/0022-5193(76)90182-X

B. J. Enquist and K. J. Niklas, Global Allocation Rules for Patterns of Biomass Partitioning in Seed Plants, Science, vol.295, issue.5559, pp.1517-1520, 2002.
DOI : 10.1126/science.1066360

H. Poorter, How does biomass distribution change with size and differ among species? An analysis for 1200 plant species from five continents, New Phytologist, vol.506, issue.3, pp.736-749, 2015.
DOI : 10.1038/nature12872

B. Moulia and M. Fournier-djimbi, Optimal mechanical design of plant stems: the models behind the allometric power laws, Proc. 2nd Plant Biomech. Conf, pp.43-55, 1997.

J. E. Bertram, Size-dependent differential scaling in branches: the mechanical design of trees revisited, Trees, vol.3, issue.4, pp.241-253, 1989.
DOI : 10.1007/BF00225358

C. Eloy, Leonardo???s Rule, Self-Similarity, and Wind-Induced Stresses in Trees, Physical Review Letters, vol.10, issue.25, p.258101, 2011.
DOI : 10.1111/j.1469-8137.2009.02854.x

URL : http://arxiv.org/pdf/1105.2591

K. Shinozaki, K. Yoda, K. Hozumi, and T. Kira, A quantitative analysis of plant form?the pipe model theory. I. basic analyses, Jpn. J. Ecol, vol.14, pp.97-105, 1964.

K. 11-niklas and H. Spatz, From The Cover: Growth and hydraulic (not mechanical) constraints govern the scaling of tree height and mass, Proc. Nat. Acad. Sc. USA 101, pp.15661-15663, 2004.
DOI : 10.1038/nature02417

K. A. 12-mcculloh and J. S. Sperry, Murray's law and the vascular architecture of plants, pp.85-100, 2006.

K. Metzger, Der wind als massgeblicher faktor für das wachstum der bäume, Münden. Forstl. Hefte, vol.3, pp.35-86, 1893.

J. 14-morgan and M. G. Cannell, Shape of tree stems--a re-examination of the uniform stress hypothesis, Tree Physiology, vol.14, issue.1, pp.49-62, 1994.
DOI : 10.1093/treephys/14.1.49

C. 15-mattheck, Teacher tree: The evolution of notch shape optimization from complex to simple, Engineering Fracture Mechanics, vol.73, issue.12, pp.1732-1742, 2006.
DOI : 10.1016/j.engfracmech.2006.02.007

B. 16-moulia, C. Coutand, and C. Lenne, Posture control and skeletal mechanical acclimation in terrestrial plants: implications for mechanical modeling of plant architecture, American Journal of Botany, vol.93, issue.10, pp.1477-1489, 2006.
DOI : 10.3732/ajb.93.10.1477

O. Hamant, Widespread mechanosensing controls the structure behind the architecture in plants, Current Opinion in Plant Biology, vol.16, issue.5
DOI : 10.1016/j.pbi.2013.06.006

A. 18-ennos, Wind as an ecological factor, Trends in Ecology & Evolution, vol.12, issue.3, pp.108-111, 1997.
DOI : 10.1016/S0169-5347(96)10066-5

E. De-langre, Effects of Wind on Plants, Annual Review of Fluid Mechanics, vol.40, issue.1, pp.141-168, 2008.
DOI : 10.1146/annurev.fluid.40.111406.102135

URL : https://hal.archives-ouvertes.fr/hal-01022800

A. Albrecht, Comment on ???Critical wind speed at which trees break???, Physical Review E, vol.94, issue.6, p.67001, 2016.
DOI : 10.1093/forestry/66.1.69

URL : https://hal.archives-ouvertes.fr/hal-01594505

G. West, J. Brown, and B. Enquist, A general model for the structure and allometry of plant vascular systems, Nature, vol.193, issue.6745, pp.664-667, 1999.
DOI : 10.1006/jtbi.1998.0723

V. Savage, Hydraulic trade-offs and space filling enable better predictions of vascular structure and function in plants, Proc. Nat. Acad. Sc. USA, pp.22722-22727, 2010.
DOI : 10.1017/S1464793106007007

G. B. West, J. H. Brown, and B. J. Enquist, A General Model for the Origin of Allometric Scaling Laws in Biology, Science, vol.276, issue.5309, pp.122-126, 1997.
DOI : 10.1126/science.276.5309.122

K. J. 24-niklas and H. C. Spatz, Wind-induced stresses in cherry trees: evidence against the hypothesis of constant stress levels, Trees, vol.14, issue.4, pp.230-237, 2000.
DOI : 10.1007/s004680050008

S. 25-bornhofen and C. Lattaud, Competition and evolution in virtual plant communities: a new modeling approach, Natural Computing, vol.14, issue.3, pp.349-385, 2009.
DOI : 10.14214/sf.a8531

Y. 26-guo, T. Fourcaud, M. Jaeger, X. Zhang, and B. Li, Plant growth and architectural modelling and its applications, Annals of Botany, vol.54, issue.5, pp.723-727, 2011.
DOI : 10.1007/s11430-010-4097-6

A. Lacointe, Carbon allocation among tree organs: A review of basic processes and representation in functional-structural tree models, Annals of Forest Science, vol.57, issue.5, pp.521-533, 2000.
DOI : 10.1051/forest:2000139

URL : https://hal.archives-ouvertes.fr/hal-01191058

J. 28-perttunen, R. Sievänen, and E. Nikinmaa, LIGNUM: a model combining the structure and the functioning of trees, Ecological Modelling, vol.108, issue.1-3, pp.189-198, 1998.
DOI : 10.1016/S0304-3800(98)00028-3

H. P. 29-yan, M. Z. Kang, P. De-reffye, and M. Dingkuhn, A Dynamic, Architectural Plant Model Simulating Resource-dependent Growth, Annals of Botany, vol.93, issue.5, pp.591-602, 2004.
DOI : 10.1093/aob/mch078

P. De-reffye, T. Fourcaud, F. Blaise, D. Barthélémy, and F. Houllier, A functional model of tree growth and tree architecture., Silva Fennica, vol.31, issue.3, pp.297-311, 1997.
DOI : 10.14214/sf.a8529

M. T. Allen, P. Prusinkiewicz, and T. M. Dejong, Using L-systems for modeling source-sink interactions, architecture and physiology of growing trees: the L-PEACH model, New Phytologist, vol.117, issue.3, pp.869-880, 2005.
DOI : 10.1007/978-1-4613-8476-2

P. 32-prusinkiewicz and A. Lindenmayer, The algorithmic beauty of plants, 1990.
DOI : 10.1007/978-1-4613-8476-2

W. 33-palubicki, Self-organizing tree models for image synthesis, ACM Trans. Graph, vol.28, issue.10, p.58, 2009.

S. 34-pacala, Forest Models Defined by Field Measurements: Estimation, Error Analysis and Dynamics, Ecological Monographs, vol.66, issue.1, pp.1-43, 1996.
DOI : 10.2307/2963479

D. W. 35-purves, J. W. Lichstein, and S. W. Pacala, Crown Plasticity and Competition for Canopy Space: A New Spatially Implicit Model Parameterized for 250 North American Tree Species, PLoS ONE, vol.200, issue.9, p.870, 2007.
DOI : 10.1371/journal.pone.0000870.s006

S. T. 36-hammond and K. J. Niklas, Emergent properties of plants competing in silico for space and light: Seeing the tree from the forest, American Journal of Botany, vol.96, issue.8, pp.1430-1444, 2009.
DOI : 10.3732/ajb.0900063

R. H. Macarthur and E. Wilson, AN EQUILIBRIUM THEORY OF INSULAR ZOOGEOGRAPHY, Evolution, vol.1, issue.4, pp.373-387, 1963.
DOI : 10.1086/282174

I. D. Morton, J. Bowers, and G. Mould, Estimating return period wave heights and wind speeds using a seasonal point process model, Coastal Engineering, vol.31, issue.1-4, pp.305-326, 1997.
DOI : 10.1016/S0378-3839(97)00016-1

M. Smith and J. , Optimization Theory in Evolution, Annual Review of Ecology and Systematics, vol.9, issue.1, pp.31-56, 1978.
DOI : 10.1146/annurev.es.09.110178.000335

G. 40-cybenko, Approximation by superpositions of a sigmoidal function, Mathematics of Control, Signals, and Systems, vol.27, issue.4, pp.303-314, 1989.
DOI : 10.1090/pspum/028.2/0507425

H. Honda, Description of the form of trees by the parameters of the tree-like body: Effects of the branching angle and the branch length on the shape of the tree-like body, Journal of Theoretical Biology, vol.31, issue.2, pp.331-338, 1971.
DOI : 10.1016/0022-5193(71)90191-3

K. J. 42-niklas and V. Kerchner, Mechanical and photosynthetic constraints on the evolution of plant shape, Paleobiology, vol.48, issue.01, pp.79-101, 1984.
DOI : 10.1146/annurev.es.10.110179.000545

H. Sinoquet, S. Thanisawanyangkura, H. Mabrouk, and P. Kasemsap, Characterization of the Light Environment in Canopies Using 3D Digitising and Image Processing, Annals of Botany, vol.82, issue.2, pp.203-212, 1998.
DOI : 10.1006/anbo.1998.0665

J. White and J. L. Harper, Correlated Changes in Plant Size and Number in Plant Populations, The Journal of Ecology, vol.58, issue.2, pp.467-485, 1970.
DOI : 10.2307/2258284

F. R. Adler, A model of self-thinning through local competition., Proc. Nat. Acad. Sc. USA 93, pp.9980-9984, 1996.
DOI : 10.1073/pnas.93.18.9980

B. J. 46-enquist and K. J. Niklas, Invariant scaling relations across tree-dominated communities, Nature, vol.3, issue.6829, pp.655-660, 2001.
DOI : 10.1046/j.1461-0248.2000.00185.x

E. P. White, S. K. Ernest, A. J. Kerkhoff, and B. J. Enquist, Relationships between body size and abundance in ecology, Trends in Ecology & Evolution, vol.22, issue.6, pp.323-330, 2007.
DOI : 10.1016/j.tree.2007.03.007

K. J. 48-niklas, The Scaling of Plant Height: A Comparison Among Major Plant Clades and Anatomical Grades, Annals of Botany, vol.72, issue.2, pp.165-172, 1993.
DOI : 10.1006/anbo.1993.1095

K. J. 49-niklas, Reexamination of a canonical model for plant organ biomass partitioning, American Journal of Botany, vol.90, issue.2, pp.250-254, 2003.
DOI : 10.3732/ajb.90.2.250

K. J. 50-niklas, E. D. Cobb, and T. Marler, A Comparison between the Record Height-to-Stem Diameter Allometries of Pachycaulis and Leptocaulis Species, Annals of Botany, vol.97, issue.1, pp.79-83, 2006.
DOI : 10.2307/2444486

K. J. 51-niklas, Size-dependent Allometry of Tree Height, Diameter and Trunk-taper, Annals of Botany, vol.75, issue.3, pp.217-227, 1995.
DOI : 10.1006/anbo.1995.1015

V. M. Savage, E. J. Deeds, and W. Fontana, Sizing Up Allometric Scaling Theory, PLoS Computational Biology, vol.104, issue.9, p.1000171, 2008.
DOI : 10.1371/journal.pcbi.1000171.s005

URL : http://doi.org/10.1371/journal.pcbi.1000171

L. P. Bentley, An empirical assessment of tree branching networks and implications for plant allometric scaling models, Ecology Letters, vol.106, issue.8, pp.1069-1078, 2013.
DOI : 10.1073/pnas.0812294106

S. 54-thelandersson and H. J. Larsen, Timber engineering, 2003.

D. 55-da-silva, F. Boudon, C. Godin, and H. Sinoquet, Multiscale Framework for Modeling and Analyzing Light Interception by Trees, Multiscale Modeling & Simulation, vol.7, issue.2, pp.910-933, 2008.
DOI : 10.1137/08071394X

J. Chave, Towards a worldwide wood economics spectrum, Ecology Letters, vol.20, issue.4, pp.351-366, 2009.
DOI : 10.1163/22941932-90001638

A. E. Zanne, Data from: Towards a worldwide wood economics spectrum, Dryad Digital Repository, 2009.

H. Poorter and C. Remkes, Leaf area ratio and net assimilation rate of 24 wild species differing in relative growth rate, Oecologia, vol.49, issue.4, pp.553-559, 1990.
DOI : 10.1007/BF00317209

A. J. Mcdonald, T. Lohammar, and T. Ingestad, Net assimilation rate and shoot area development in birch (Betula pendula Roth.) at different steady-state values of nutrition and photon flux density, Trees, vol.6, issue.1, pp.1-6, 1992.
DOI : 10.1007/BF00224491

B. Zeide and P. Pfeifer, A method for estimation of fractal dimension of tree crowns. Forest Sci, pp.1253-1265, 1991.

P. 61-raumonen, Fast automatic precision tree models from terrestrial laser scanner data. Remote Sens, pp.491-520, 2013.

V. 62-bonnesoeur, T. Constant, B. Moulia, and M. Fournier, Forest trees filter chronic wind-signals to acclimate to high winds, New Phytologist, vol.39, issue.3, pp.850-860, 2016.
DOI : 10.2151/jmsj1965.57.3_227

Y. 63-hautier, P. A. Niklaus, and A. Hector, Competition for Light Causes Plant Biodiversity Loss After Eutrophication, Science, vol.82, issue.1, pp.636-638, 2009.
DOI : 10.1890/07-0393.1

R. Sedgewick, Implementing Quicksort programs, Communications of the ACM, vol.21, issue.10
DOI : 10.1145/359619.359631

Z. P. Ba?ant and J. Planas, Fracture and size effect in concrete and other quasibrittle materials, 1998.

A. N. Strahler, DYNAMIC BASIS OF GEOMORPHOLOGY, Geological Society of America Bulletin, vol.63, issue.9, pp.923-938, 1952.
DOI : 10.1130/0016-7606(1952)63[923:DBOG]2.0.CO;2

D. L. Turcotte, J. D. Pelletier, and W. Newman, Networks with Side Branching in Biology, Journal of Theoretical Biology, vol.193, issue.4, pp.577-592, 1998.
DOI : 10.1006/jtbi.1998.0723

S. B. Barker, G. Cumming, and K. Horsfield, Quantitative morphometry of the branching structure of trees, Journal of Theoretical Biology, vol.40, issue.1, pp.33-43, 1973.
DOI : 10.1016/0022-5193(73)90163-X

R. J. 69-tausch, A STRUCTURALLY BASED ANALYTIC MODEL FOR ESTIMATION OF BIOMASS AND FUEL LOADS OF WOODLAND TREES, Natural Resource Modeling, vol.103, issue.4, pp.463-488, 2009.
DOI : 10.1111/j.1939-7445.2008.00010.x