G. Abreu-vieira, X. C. Gavrilova, O. Reitman, and M. L. , Integration of body temperature into the analysis of energy expenditure in the mouse, Mol Metab, vol.4, pp.461-470, 2015.

I. Andik, S. Donhoffer, M. Farkas, and P. Schmidt, Ambient temperature and survival on a protein-deficient diet, Br J Nutr, vol.17, pp.257-261, 1963.

J. W. Apolzan, N. S. Carnell, R. D. Mattes, and W. W. Campbell, Inadequate dietary protein increases hunger and desire to eat in younger and older men, J Nutr, vol.137, pp.1478-1482, 2007.

J. R. Arch, D. Hislop, S. J. Wang, and J. R. Speakman, Some mathematical and technical issues in the measurement and interpretation of open-circuit indirect calorimetry in small animals, Int J Obes, vol.30, pp.1322-1331, 2006.

B. Cannon and J. Nedergaard, Nonshivering thermogenesis and its adequate measurement in metabolic studies, J Exp Biol, vol.214, pp.242-253, 2011.

T. Chalvon-demersay, P. C. Even, D. Tomé, C. Chaumontet, J. Piedcoq et al., Low-protein diet induces, whereas high-protein diet reduces hepatic FGF21 production in mice, but glucose and not amino acids up-regulate FGF21 in cultured hepatocytes, J Nutr Biochem, vol.36, pp.60-67, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01568615

E. Danforth, Dietary-induced thermogenesis: control of energy expenditure, Life Sci, vol.28, pp.1821-1827, 1981.

S. A. De-frança, M. P. Santos, F. Przygodda, M. A. Garófalo, I. C. Kettelhut et al., A low-protein, high-carbohydrate diet stimulates thermogenesis in the brown adipose tissue of rats via ATF-2, Lipids, vol.51, pp.303-310, 2016.

P. Donald, C. C. Pitts, and S. L. Pohl, Body weight and composition in laboratory rats: effects of diets with high or low protein concentrations, Science, vol.211, pp.185-186, 1981.

F. Du, D. A. Higginbotham, and B. D. White, Food intake, energy balance and serum leptin concentrations in rats fed low-protein diets, J Nutr, vol.130, pp.514-521, 2000.

P. C. Even and A. Blais, Increased cost of motor activity and heat transfer between non-shivering thermogenesis, motor activity, and thermic effect of feeding in mice housed at room temperature-implications in preclinical studies, Front Nutr, vol.3, p.43, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01624561

P. C. Even, A. Mokhtarian, and A. Pele, Practical aspects of indirect calorimetry in laboratory animals, Neurosci Biobehav Rev, vol.18, issue.94, pp.90056-90062, 1994.

P. C. Even and N. A. Nadkarni, Indirect calorimetry in laboratory mice and rats: principles, practical considerations, interpretation and perspectives, Am J Physiol Regul Integr Comp Physiol, vol.303, pp.459-476, 2012.
URL : https://hal.archives-ouvertes.fr/hal-01004119

P. C. Even, E. Perrier, J. L. Aucouturier, and S. Nicolaïdis, Utilisation of the method of Kalman filtering for performing the on-line computation of background metabolism in the free-moving, free-feeding rat, Physiol Behav, vol.49, pp.177-187, 1991.

H. M. Feldmann, V. Golozoubova, B. Cannon, and J. Nedergaard, UCP1 ablation induces obesity and abolishes diet-induced thermogenesis in mice exempt from thermal stress by living at thermoneutrality, Cell Metab, vol.9, pp.203-209, 2009.

M. E. Harper, K. Green, and M. D. Brand, The efficiency of cellular energy transduction and its implications for obesity, Annu Rev Nutr, vol.28, pp.13-33, 2008.

E. W. Hartsook, T. V. Hershberger, and J. C. Nee, Effects of dietary protein content and ratio of fat to carbohydrate calories on energy metabolism and body composition of growing rats, J Nutr, vol.103, pp.167-178, 1973.

J. Himms-hagen, Thermogenesis in brown adipose tissue as an energy buffer. Implications for obesity, N Engl J Med, vol.311, pp.1549-1558, 1984.

X. Huang, D. P. Hancock, A. K. Gosby, A. C. Mcmahon, S. M. Solon et al., Effects of dietary protein to carbohydrate balance on energy intake, fat storage, and heat production in mice, Obesity (Silver Spring), vol.21, pp.85-92, 2013.

L. P. Kozak, Brown fat and the myth of diet-induced thermogenesis, Cell Metab, vol.11, pp.263-267, 2010.

S. K. Maloney, Low protein feeding and energy transduction in rats, Temperature (Austin), vol.1, pp.97-98, 2014.

D. J. Marcinek, K. A. Schenkman, W. A. Ciesielski, and K. E. Conley, Mitochondrial coupling in vivo in mouse skeletal muscle, Am J Physiol Cell Physiol, vol.286, pp.457-463, 2004.

C. D. Morrison, S. D. Reed, and T. M. Henagan, Homeostatic regulation of protein intake: in search of a mechanism, Am J Physiol Regul Integr Comp Physiol, vol.302, pp.917-928, 2012.

Y. S. Peng, L. L. Meliza, M. G. Vavich, and A. R. Kemmerer, Changes in food intake and nitrogen metabolism of rats while adapting to a low or high protein diet, J Nutr, vol.104, pp.1008-1017, 1974.

J. C. Peters and A. E. Harper, Influence of dietary protein level on protein self-selection and plasma and brain amino acid concentrations, Physiol Behav, vol.33, pp.90048-90057, 1984.

Y. Ravussin, C. A. Leduc, K. Watanabe, and R. L. Leibel, Effects of ambient temperature on adaptive thermogenesis during maintenance of reduced body weight in mice, Am J Physiol Regul Integr Comp Physiol, vol.303, pp.438-448, 2012.

D. F. Rolfe, J. M. Newman, J. A. Buckingham, M. G. Clark, and M. D. Brand, Contribution of mitochondrial proton leak to respiration rate in working skeletal muscle and liver and to SMR, Am J Physiol Cell Physiol, vol.276, pp.692-699, 1999.

D. Rolfe and M. D. Brand, Contribution of mitochondrial proton leak to skeletal muscle respiration and to standard metabolic rate, Am J Physiol Cell Physiol, vol.271, pp.1380-1389, 1996.

N. J. Rothwell and M. J. Stock, Influence of carbohydrate and fat intake on diet-induced thermogenesis and brown fat activity in rats fed low-protein diets, J Nutr, vol.117, pp.1721-1726, 1987.

N. J. Rothwell, M. J. Stock, and R. S. Tyzbir, Mechanisms of thermogenesis induced by low-protein diets, Metabolism, vol.32, issue.83, pp.90190-90197, 1983.

E. Rouy, L. Vico, N. Laroche, V. Benoit, B. Rousseau et al., Protein quality affects bone status during moderate protein restriction in growing mice, Bone, vol.59, pp.7-13, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01173415

L. Sabra-makke, M. Maritan, J. Planchais, M. Boutant, J. P. Pégorier et al., Hypothalamic ventromedial COUP-TFII protects against hypoglycemia-associated autonomic failure, Proc Natl Acad Sci, vol.110, pp.4333-4338, 2013.
URL : https://hal.archives-ouvertes.fr/hal-01004468

C. Selman, T. K. Korhonen, L. Bünger, W. G. Hill, and J. R. Speakman, Thermoregulatory responses of two mouse Mus musculus strains selectively bred for high and low food intake, J Comp Physiol B, vol.171, pp.661-668, 2001.

A. Sørensen, D. Mayntz, D. Raubenheimer, and S. J. Simpson, Protein-leverage in mice: the geometry of macronutrient balancing and consequences for fat deposition, Obesity (Silver Spring), vol.16, pp.566-571, 2008.

S. E. Specter, J. S. Hamilton, J. S. Stern, and B. A. Horwitz, Chronic protein restriction does not alter energetic efficiency or brown adipose tissue thermogenic capacity in genetically obese (fa/fa) Zucker rats, J Nutr, vol.125, pp.2183-2193, 1995.

M. J. Stock, Thermogenesis and energy balance, Int J Obes Relat Metab Disord, vol.16, issue.2, pp.13-16, 1992.

R. W. Swick and C. L. Gribskov, The effect of dietary protein levels on diet-induced thermogenesis in the rat, J Nutr, vol.113, pp.2289-2294, 1983.

J. G. Vander-tuig and W. M. Beneke, Low-protein diet blocks development of hyperphagia and obesity in rats with hypothalamic knife cuts, J Nutr, vol.126, pp.1713-1721, 1996.

A. J. Webster, Energy partitioning, tissue growth and appetite control, Proc Nutr Soc, vol.52, pp.69-76, 1993.

B. D. White, F. Du, and D. A. Higginbotham, Low dietary protein is associated with an increase in food intake and a decrease in the in vitro release of radiolabeled glutamate and GABA from the lateral hypothalamus, Nutr Neurosci, vol.6, pp.361-367, 2003.

B. D. White, B. He, R. G. Dean, and R. J. Martin, Low-protein diets increase neuropeptide Y gene expression in the basomedial hypothalamus of rats, J Nutr, vol.124, pp.1152-1160, 1994.

B. D. White, M. H. Porter, and R. J. Martin, Effects of age on the feeding response to moderately low dietary protein in rats, Physiol Behav, vol.68, pp.673-681, 2000.

B. D. White, M. H. Porter, and R. J. Martin, Protein selection, food intake, and body composition in response to the amount of dietary protein, Physiol Behav, vol.69, issue.99, pp.232-234, 2000.

X. Q. Zhao, H. Jørgensen, V. M. Gabert, and B. O. Eggum, Energy metabolism and protein balance in growing rats housed in 18°C or 28°C environments and fed different levels of dietary protein, J Nutr, vol.126, pp.2036-2043, 1996.