B. P. Ayati and I. Klapper, Models of microbial dormancy in biofilms and planktonic cultures, Communications in Mathematical Sciences, vol.10, issue.2, pp.493-511, 2012.
DOI : 10.4310/CMS.2012.v10.n2.a4

N. Q. Balaban, Persistence: mechanisms for triggering and enhancing phenotypic variability, Current Opinion in Genetics & Development, vol.21, issue.6, pp.768-775, 2011.
DOI : 10.1016/j.gde.2011.10.001

N. Q. Balaban, J. Merrin, R. Chait, L. Kowalik, and S. Leibler, Bacterial Persistence as a Phenotypic Switch, Science, vol.305, issue.5690, pp.1622-1625, 2004.
DOI : 10.1126/science.1099390

N. Q. Balaban, K. Gerdes, K. Lewis, and J. D. Mckinney, A problem of persistence: still more questions than answers?, Nature Reviews Microbiology, vol.467, issue.8, pp.587-591, 2013.
DOI : 10.1038/nature09333

J. D. Chambless and P. S. Stewart, A three-dimensional computer model analysis of three hypothetical biofilm detachment mechanisms, Biotechnology and Bioengineering, vol.91, issue.6, pp.1573-1584, 2007.
DOI : 10.2166/wst.2006.401

K. Chihara, S. Matsumoto, Y. Kagawa, and S. Tsuneda, Mathematical modeling of dormant cell formation in growing biofilm, Frontiers in Microbiology, vol.91, pp.1-8, 2015.
DOI : 10.1002/bit.20544

K. Choi and H. P. Schweizer, mini-Tn7 insertion in bacteria with single attTn7 sites: example Pseudomonas aeruginosa, Nature Protocols, vol.212, issue.1, pp.153-161, 2006.
DOI : 10.1038/nprot.2006.24

N. G. Cogan, Effects of persister formation on bacterial response to dosing, Journal of Theoretical Biology, vol.238, issue.3, pp.694-703, 2006.
DOI : 10.1016/j.jtbi.2005.06.017

N. G. Cogan, J. Brown, K. Darres, and K. Petty, ABSTRACT, Antimicrobial Agents and Chemotherapy, vol.56, issue.9, pp.4816-4826, 2012.
DOI : 10.1128/AAC.00675-12

N. R. Cohen, M. A. Lobritz, C. , and J. J. , Microbial Persistence and the Road to Drug Resistance, Cell Host & Microbe, vol.13, issue.6, pp.632-642, 2013.
DOI : 10.1016/j.chom.2013.05.009

R. Fasani and M. Savageau, Molecular mechanisms of multiple toxin-antitoxin systems are coordinated to govern the persister phenotype, Proceedings of the National Academy of Sciences, vol.29, issue.3, pp.2528-2537, 2013.
DOI : 10.1099/00221287-29-3-421

J. Feng, D. A. Kessler, E. Ben-jacob, and H. Levine, Growth feedback as a basis for persister bistability, Proceedings of the National Academy of Sciences, vol.110, issue.27, pp.544-549, 2013.
DOI : 10.1073/pnas.1301023110

O. Gefen and N. Q. Balaban, The importance of being persistent: heterogeneity of bacterial populations under antibiotic stress, FEMS Microbiology Reviews, vol.43, issue.Spec No, pp.704-717, 2009.
DOI : 10.1128/AAC.34.10.1938

L. Gelens, L. Hill, A. Vandervelde, J. Danckaert, L. et al., A General Model for Toxin-Antitoxin Module Dynamics Can Explain Persister Cell Formation in E. coli, PLoS Computational Biology, vol.81, issue.8, p.1003190, 2013.
DOI : 10.1371/journal.pcbi.1003190.s009

C. Guilhen, A. Iltis, C. Forestier, and D. Balestrino, Genome Sequence of a Clinical Klebsiella pneumoniae Sequence Type 6 Strain, Genome Announcements, vol.34, issue.1, pp.1311-1326, 2015.
DOI : 10.1093/nar/gkj406

A. Harms, E. Maisonneuve, and K. Gerdes, Mechanisms of bacterial persistence during stress and antibiotic exposure, Science, vol.6, issue.6318, p.4268, 2016.
DOI : 10.1038/srep20519

S. Helaine and E. Kugelberg, Bacterial persisters: formation, eradication, and experimental systems, Trends in Microbiology, vol.22, issue.7, pp.417-424, 2014.
DOI : 10.1016/j.tim.2014.03.008

J. Oers, A. Kaldalu, N. Tenson, and T. , The frequency of persisters in Escherichia coli reflects the kinetics of awakening from dormancy, J Bacteriol, vol.192, pp.3379-3384, 2010.

H. Kahiluoto, J. Kaseva, K. Hakala, S. J. Himanen, L. Jauhiainen et al., Cultivating resilience by empirically revealing response diversity, Global Environmental Change, vol.25, pp.186-193, 2014.
DOI : 10.1016/j.gloenvcha.2014.02.002

URL : https://doi.org/10.1016/j.gloenvcha.2014.02.002

N. Kaldalu, V. Hauryliuk, and T. Tenson, Persisters???as elusive as ever, Applied Microbiology and Biotechnology, vol.8, issue.218, pp.6545-6553, 2016.
DOI : 10.1007/BF02010671

URL : https://link.springer.com/content/pdf/10.1007%2Fs00253-016-7648-8.pdf

I. Keren, N. Kaldalu, A. Spoering, Y. Wang, L. et al., Persister cells and tolerance to antimicrobials, FEMS Microbiology Letters, vol.33, issue.1, pp.13-18, 2004.
DOI : 10.1128/AAC.33.5.705

URL : https://academic.oup.com/femsle/article-pdf/230/1/13/19384487/230-1-13.pdf

C. I. Kint, N. Verstraeten, M. Fauvart, and J. Michiels, New-found fundamentals of bacterial persistence, Trends in Microbiology, vol.20, issue.12, pp.577-585, 2012.
DOI : 10.1016/j.tim.2012.08.009

S. Lechner, P. Patra, S. Klumpp, and R. Bertram, Persister Cells, Journal of Molecular Microbiology and Biotechnology, vol.95, issue.6, pp.381-391, 2012.
DOI : 10.1128/AAC.49.4.1483-1494.2005

B. R. Levin and K. I. Udekwu, Population Dynamics of Antibiotic Treatment: a Mathematical Model and Hypotheses for Time-Kill and Continuous-Culture Experiments, Antimicrobial Agents and Chemotherapy, vol.54, issue.8, pp.3414-3426, 2010.
DOI : 10.1128/AAC.00381-10

A. Penesyan, M. Gillings, and I. T. Paulsen, Antibiotic Discovery: Combatting Bacterial Resistance in Cells and in Biofilm Communities, Molecules, vol.56, issue.4, pp.5286-5298, 2015.
DOI : 10.1007/s11908-008-0006-y

M. E. Roberts and P. S. Stewart, Modelling protection from antimicrobial agents in biofilms through the formation of persister cells, Microbiology, vol.151, issue.1, pp.75-80, 2005.
DOI : 10.1099/mic.0.27385-0

S. Anchez-romero, M. A. , C. Us, and J. , Contribution of phenotypic heterogeneity to adaptive antibiotic resistance, Proceedings of the National Academy of Sciences, vol.97, issue.12, pp.355-360, 2014.
DOI : 10.1073/pnas.120163297

B. Szomolay and N. G. Cogan, Modelling mechanical and chemical treatment of biofilms with two phenotypic resistance mechanisms, Environmental Microbiology, vol.3, issue.6, pp.1870-1883, 2015.
DOI : 10.1038/emi.2014.3

L. S. Tsimring, Noise in biology, Reports on Progress in Physics, vol.77, issue.2, p.26601, 2014.
DOI : 10.1088/0034-4885/77/2/026601

N. M. Vega and J. Gore, Collective antibiotic resistance: mechanisms and implications, Current Opinion in Microbiology, vol.21, pp.28-34, 2014.
DOI : 10.1016/j.mib.2014.09.003

URL : http://dspace.mit.edu/bitstream/1721.1/108179/1/Collective%20antibiotic%20resistance.pdf

Y. Wakamoto, N. Dhar, R. Chait, K. Schneider, F. Signorino-gelo et al., Dynamic Persistence of Antibiotic-Stressed Mycobacteria, Science, vol.81, issue.8, pp.91-96, 2013.
DOI : 10.1021/j100540a008

X. Wang, Y. Kang, C. Luo, T. Zhao, L. Liu et al., Heteroresistance at the Single-Cell Level: Adapting to Antibiotic Stress through a Population-Based Strategy and Growth-Controlled Interphenotypic Coordination, mBio, vol.5, issue.1, pp.942-955, 2014.
DOI : 10.1128/mBio.00942-13

T. K. Wood, Combatting bacterial persister cells, Biotechnology and Bioengineering, vol.79, issue.3, pp.476-483, 2016.
DOI : 10.1128/AEM.02636-13

Y. Zhang, Persisters, persistent infections and the Yin???Yang model, Emerging Microbes & Infections, vol.3, issue.1, p.3
DOI : 10.1038/nchembio.915

F. Zucca, Persistent and susceptible bacteria with individual deaths, Journal of Theoretical Biology, vol.343, pp.69-78, 2014.
DOI : 10.1016/j.jtbi.2013.11.008

URL : http://arxiv.org/pdf/1210.4074