G. Joachimiak, C. Ordonez, and S. Lory, A virulence locus of Pseudomonas 276 aeruginosa encodes a protein secretion apparatus, Science, vol.312, pp.1526-1530, 2006.

S. Pukatzki, A. Ma, A. Revel, D. Sturtevant, and J. Mekalanos, Type VI secretion system translocates a phage tail spike-like protein into target cells where it cross-links actin, Proceedings of the National Academy of Sciences, vol.22, issue.22, pp.15508-15513, 2007.
DOI : 10.1093/nar/22.22.4673

URL : http://www.pnas.org/content/104/39/15508.full.pdf

S. Almo and J. Mekalanos, Type VI secretion apparatus and phage tail-associated 282 protein complexes share a common evolutionary origin, Proc Natl Acad Sci U S A, vol.283, issue.106, pp.4154-4159, 2009.

. Vipa, VipB tubules by ClpV-mediated threading is crucial for type VI protein 286 secretion, EMBO J, vol.28, pp.315-325, 2009.

N. Kapitein, G. Bonemann, A. Pietrosiuk, F. Seyffer, I. Hausser et al., ClpV recycles VipA/VipB tubules and prevents non-productive tubule formation to ensure efficient type VI protein secretion, Molecular Microbiology, vol.6, issue.5, pp.1013-1028, 2013.
DOI : 10.1371/journal.pone.0023876

URL : http://onlinelibrary.wiley.com/doi/10.1111/mmi.12147/pdf

M. Basler, M. Pilhofer, G. Henderson, G. Jensen, and J. Mekalanos, Type VI secretion requires a dynamic contractile phage tail-like structure, Nature, vol.1, issue.7388, pp.182-292, 2012.
DOI : 10.1038/nprot.2006.432

URL : http://europepmc.org/articles/pmc3527127?pdf=render

M. Basler and J. Mekalanos, Type 6 secretion dynamics within and between bacterial cells. 294 Science, pp.815-295, 2012.
DOI : 10.1126/science.1222901

URL : http://europepmc.org/articles/pmc3557511?pdf=render

Y. Brunet, L. Espinosa, S. Harchouni, T. Mignot, and E. Cascales, Imaging Type VI Secretion-Mediated Bacterial Killing, Cell Reports, vol.3, issue.1, pp.36-41, 2013.
DOI : 10.1016/j.celrep.2012.11.027

URL : https://hal.archives-ouvertes.fr/hal-01458227

E. Durand, C. Cambillau, E. Cascales, and L. Journet, VgrG, Tae, Tle, and beyond: the versatile arsenal of Type VI secretion effectors, Trends in Microbiology, vol.22, issue.9, pp.498-299, 2014.
DOI : 10.1016/j.tim.2014.06.004

URL : https://hal.archives-ouvertes.fr/hal-01458195

A. Russell, S. Peterson, and J. Mougous, Type VI secretion system effectors: poisons with a purpose, Nature Reviews Microbiology, vol.8, issue.2, pp.137-148, 2014.
DOI : 10.1371/journal.pone.0057609

E. Cascales and C. Cambillau, Structural biology of type VI secretion systems, Philosophical Transactions of the Royal Society B: Biological Sciences, vol.364, issue.2, pp.1102-1111, 2012.
DOI : 10.1016/j.jmb.2006.08.078

URL : https://hal.archives-ouvertes.fr/hal-01458261

E. Cascales, Structural characterization and oligomerization of the TssL protein, a 306 component shared by bacterial type VI and type IVb secretion systems, J Biol, vol.307, issue.287, pp.14157-14168, 2012.

C. Felisberto-rodrigues, E. Durand, M. Aschtgen, S. Blangy, M. Ortiz-lombardia et al., Towards a Structural Comprehension of Bacterial Type VI Secretion Systems: Characterization of the TssJ-TssM Complex of an Escherichia coli Pathovar, PLoS Pathogens, vol.15, issue.11, pp.1002386-312, 2011.
DOI : 10.1371/journal.ppat.1002386.s010

URL : https://hal.archives-ouvertes.fr/hal-01458272

M. Aschtgen, M. Gavioli, A. Dessen, R. Lloubes, and E. Cascales, The SciZ protein anchors 313 the enteroaggregative Escherichia coli Type VI secretion system to the cell wall, p.314

M. Aschtgen, M. Thomas, and E. Cascales, Anchoring the type VI secretion system to the 316 peptidoglycan, pp.535-540, 2010.

A. Zoued, C. Cassaro, E. Durand, B. Douzi, A. Espana et al., Structure???Function Analysis of the TssL Cytoplasmic Domain Reveals a New Interaction between the Type VI Secretion Baseplate and Membrane Complexes, Journal of Molecular Biology, vol.428, issue.22, pp.4413-4423, 2016.
DOI : 10.1016/j.jmb.2016.08.030

URL : https://hal.archives-ouvertes.fr/hal-01439100

A. Desmyter, B. Bardiaux, and A. Dujeancourt, Biogenesis and structure of a type 323 VI secretion membrane core complex, Nature, vol.523, pp.555-560, 2015.

N. Taylor, N. Prokhorov, R. Guerrero-ferreira, M. Shneider, C. Browning et al., Structure of the T4 baseplate and its function in triggering sheath contraction, Nature, vol.372, issue.7603, pp.346-352, 2016.
DOI : 10.1016/j.jmb.2007.05.022

L. Journet and R. Fronzes, Priming and polymerization of a bacterial contractile 329 tail structure, Nature, vol.531, pp.59-63, 2016.

J. Osipiuk, X. Xu, H. Cui, A. Savchenko, A. Edwards et al., Crystal structure of 334 secretory protein Hcp3 from Pseudomonas aeruginosa, J Struct Funct Genomics, vol.335, issue.12, pp.201121-201147

B. Douzi, S. Spinelli, S. Blangy, A. Roussel, E. Durand et al., Cambillau 337 C: Crystal structure and self-interaction of the type VI secretion tail-tube protein 338 from enteroaggregative Escherichia coli-repeat 340 proteins sharpen and diversify the type VI secretion system spike, PLoS One Nature, vol.2014, issue.500, pp.350-353, 2013.

/. Vipa, D. Clemens, P. Ge, B. Lee, M. Horwitz et al., VI secretion complex suggests a contraction-state-specific recycling 344 mechanism 345 **25 Atomic structure of T6SS 346 reveals interlaced array essential to function, Cell Rep Cell Kudryashev M, vol.8, issue.160, pp.20-30940, 2014.

H. Stahlberg, E. Egelman, and M. Basler, Structure of the type VI secretion system 349 contractile sheath, Cell, vol.160, pp.952-962, 2015.

E. Cascales and C. Cambillau, Structure and specificity of the Type VI secretion system 352

*. Chang, Y. Rettberg, L. Ortega, D. Jensen, and G. , In vivo structures of an intact type 355 VI secretion system revealed by electron cryotomography, EMBO Rep, vol.356, issue.18, pp.1090-1099, 2017.

T. Maier, H. Stahlberg, and M. Basler, CryoEM structure of the extended Type VI 359 secretion system tube-sheath complex, Nat Microbiol, p.360, 2017.

P. Leiman and M. Shneider, Contractile tail machines of bacteriophages Adv Exp Med 361, Biol, vol.2012, issue.726, pp.93-114

C. Buttner, Y. Wu, K. Maxwell, and A. Davidson, Baseplate assembly of phage Mu: Defining the conserved core components of contractile-tailed phages and related bacterial systems, Proceedings of the National Academy of Sciences, vol.113, issue.36, pp.10174-10179
DOI : 10.1073/pnas.91.6.2146

A. Zoued, E. Durand, C. Bebeacua, Y. Brunet, B. Douzi et al., Journet 366 L: TssK is a trimeric cytoplasmic protein interacting with components of both 367

. Tssk, a core component of the bacterial Type VI secretion system, reveals 371 distinct oligomeric states of TssK and identifies a TssK-TssFG sub-complex, p.372

Y. Brunet, A. Zoued, F. Boyer, B. Douzi, and E. Cascales, 1042/BJ20131426. 373 *34, Biochem J, vol.10, 2014.

. Tssefgk-vgrg, Phage-Like Baseplate Is Recruited to the TssJLM Membrane 375 Complex via Multiple Contacts and Serves As Assembly Platform for Tail 376

A. Desmyter, S. Spinelli, A. Roussel, and C. Cambillau, Camelid nanobodies: killing two birds with one stone, Current Opinion in Structural Biology, vol.32, p.380, 2015.
DOI : 10.1016/j.sbi.2015.01.001

URL : https://hal.archives-ouvertes.fr/hal-01439032

Y. Cherrak, A. Zoued, A. Desmyter, and E. Durand, Type VI secretion TssK 381 baseplate protein exhibits structural similarity with phage receptor-binding 382 proteins and evolved to bind the membrane complex, Nat Microbiol, pp.383-385, 2017.

. Tagj, HsiE1 distinguishes type VI secretion classes, J Biol Chem, vol.289, pp.33032-387, 2014.

M. Coyne, K. Roelofs, and L. Comstock, Type VI secretion systems of human gut Bacteroidales segregate into three genetic architectures, two of which are contained on mobile genetic elements, BMC Genomics, vol.110, issue.17, pp.58-391, 2016.
DOI : 10.1073/pnas.1300627110

V. Campanacci, S. Moineau, and C. Cambillau, Structure of lactococcal phage p2 396 baseplate and its mechanism of activation, Proc Natl Acad Sci, vol.397, issue.107, pp.6852-6857, 2010.