M. Baron, M. Iacomini, E. Fantat, and P. Gorin, Galactomannan, lichenan and isolichenan 457 from the polysaccharide-rich lichen Newropogon aurantiaco-ater, Phytochemistry, vol.458, issue.3000, pp.3125-3126, 1991.

B. Baur, L. Fröberg, and A. Baur, Ultrastructure of snail grazing damage to calcicolous lichens, Nordic Journal of Botany, vol.49, issue.1, pp.119-128, 2000.
DOI : 10.1007/BF02036654

A. Blakeney, P. Harris, R. Henry, and B. Stone, A simple and rapid preparation of alditol 462 acetates for monosaccharide analysis, Carbohydr Res, vol.11383, pp.291-299, 1983.

B. Bodo and D. Molho, Structure of argopsin, new chlorodepsidone from lichen Argopsis 465 megalospora, CR Acad Sci C, vol.278, pp.625-627, 1974.

M. Charrier, M. A. Guillaume, and D. , Soil calcium availability influences shell 467 ecophenotype formation in the Sub-Antarctic land snail, Notodiscus hookeri, PLoS ONE, vol.468, issue.8, 2013.

M. Charrier and C. Rouland, M??ller (Gastropoda Pulmonata), Journal of Experimental Zoology, vol.60, issue.2, pp.125-135, 2001.
DOI : 10.1271/bbb.60.674

L. Chevalier, L. Coz-bouhnik, M. Charrier, and M. , Influence of inorganic compounds on food 473 selection by the brown garden snail Cornu aspersum (Muller)(Gastropoda: Pulmonata), Malacologia, vol.45, pp.474125-132, 2003.

P. Coker, Damage to Lichens by Gastropods, The Lichenologist, vol.3, issue.03, pp.428-428, 1967.
DOI : 10.1017/S0024282967000465

R. Cook, S. Bailey, and C. Mccrohan, The influence of nutritional status on the feeding behaviour of the field slug, Deroceras reticulatum (M??ller), Animal Behaviour, vol.59, issue.1, pp.167-479, 2000.
DOI : 10.1006/anbe.1999.1275

W. Cook, M. Raisbeck, and T. Cornish, Paresis and Death in Elk (Cervus elaphus) Due to Lichen Intoxication in Wyoming, Journal of Wildlife Diseases, vol.43, issue.3, pp.498-503, 2007.
DOI : 10.7589/0090-3558-43.3.498

M. Denny, The role of gastropod pedal mucus in locomotion, Nature, vol.156, issue.5761, pp.160-161, 1980.
DOI : 10.1038/285160a0

V. Flari, M. Matoub, and C. Rouland, Purification and characterization of a ??-mannanase from the digestive tract of the edible snail Helix lucorum L., Carbohydrate Research, vol.275, issue.1, pp.207-213, 1995.
DOI : 10.1016/0008-6215(95)00136-H

A. Gadea, L. Pogam, P. Biver, and G. , Which Specialized Metabolites Does the Native Subantarctic Gastropod Notodiscus hookeri Extract from the Consumption of the Lichens Usnea taylorii and Pseudocyphellaria crocata?, Molecules, vol.27, issue.3, p.425, 2017.
DOI : 10.1186/1471-2164-7-142

URL : https://hal.archives-ouvertes.fr/hal-01487589

D. Galloway, The lichen genera Argopsis and Stereocaulon in New Zealand, Bot Notiser, vol.493, issue.133, pp.261-279, 1980.

D. Mckey, Adaptive Patterns in Alkaloid Physiology, The American Naturalist, vol.108, issue.961, pp.305-320, 1974.
DOI : 10.1086/282909

K. Molnár and E. Farkas, Current results on biological activities of lichen secondary 535 metabolites: a review, Z Naturforsch C, vol.65, pp.157-173, 2010.

T. Ng, S. Saltin, and M. Davies, Snails and their trails: the multiple functions of trail-following in gastropods, Biological Reviews, vol.74, issue.Suppl, pp.683-700, 2013.
DOI : 10.1093/mollus/eyn014

A. Nicolai, J. Filser, and R. Lenz, Composition of body storage compounds influences egg 539 quality and reproductive investment in the land snail Cornu aspersum, Can J Zool, vol.540, issue.90, pp.1161-1170, 2012.

P. Nimis and N. Skert, Lichen chemistry and selective grazing by the coleopteran Lasioderma serricorne, Environmental and Experimental Botany, vol.55, issue.1-2, pp.175-182, 2006.
DOI : 10.1016/j.envexpbot.2004.10.011

L. Nybakken, A. Helmersen, Y. Gauslaa, and V. Selås, Lichen Compounds Restrain Lichen Feeding by Bank Voles (Myodes glareolus), Journal of Chemical Ecology, vol.37, issue.3, pp.298-304, 2010.
DOI : 10.1007/978-3-642-85243-5

H. Pöykkö, M. Hyvärinen, and M. Ba?kor, REMOVAL OF LICHEN SECONDARY METABOLITES AFFECTS FOOD CHOICE AND SURVIVAL OF LICHENIVOROUS MOTH LARVAE, Ecology, vol.86, issue.10, pp.2623-2632, 1890.
DOI : 10.1023/B:JOEC.0000006421.49263.ae

R. Team, R: A language and environment for statistical computing. R Foundation for 550 Statistical Computing, 2017.

A. Rai and B. Bergman, Cyanolichens, Biology & Environment: Proceedings of the Royal Irish Academy, vol.102, issue.1, pp.19-22, 2002.
DOI : 10.3318/BIOE.2002.102.1.19

B. Renner, Canadian Journal of Botany, vol.60, issue.5, pp.630-633, 1982.
DOI : 10.1139/b82-083

T. Rezanka and V. Dembitsky, Fatty acids of lichen species from Tian Shan mountains. Folia 556, Microbiol, vol.44, pp.643-646, 1999.

K. Rhee, Determination of Total Nitrogen Curr Protoc Food Analyt Chem B1, 2001.

C. Roullier, M. Chollet-krugler, and E. Pferschy-wenzig, Characterization and 560 identification of mycosporines-like compounds in cyanolichens. Isolation of mycosporine 561 hydroxyglutamicol from Nephroma laevigatum Ach, Phytochemistry, vol.72, 2011.

P. Rundel, The ecological role of secondary lichen substances, Biochemical Systematics and Ecology, vol.6, issue.3, pp.157-170, 1978.
DOI : 10.1016/0305-1978(78)90002-9

W. Sanders, Lichens: the interface between mycology and plant morphology : whereas 566 most other fungi live as an absorptive mycelium inside their food substrate, the lichen 567 fungi construct a plant-like body within which photosynthetic algal symbionts are 568 cultivated, Bioscience, vol.512, pp.1025-1035, 2001.

C. Schoch, K. Seifert, and S. Huhndorf, Nuclear ribosomal internal transcribed spacer 571 (ITS) region as a universal DNA barcode marker for Fungi, Proc Natl Acad Sci, vol.572, issue.109, pp.6241-6246, 2012.

F. Slansky, Effect of the Lichen Chemicals Atranorin and Vulpinic Acid upon Feeding and Growth of Larvae of the Yellow-striped Armyworm, Spodoptera ornithogalli1, Environmental Entomology, vol.8, issue.5, pp.865-868, 1979.
DOI : 10.1093/ee/8.5.865

K. Solhaug and Y. Gauslaa, Acetone rinsing-a method for testing ecological and physiological 577 roles of secondary compounds in living lichens, Symbiosis, vol.30, pp.301-315, 2001.

K. Solhaug and Y. Gauslaa, Secondary lichen compounds as protection against excess solar 579 radiation and herbivores, pp.283-304, 2012.

B. Speiser, Food and feeding behaviour The Biology of Terrestrial 582 Molluscs, Baker GM. CAB International, pp.259-288, 2001.

E. Stocker-wörgötter, Metabolic diversity of lichen-forming ascomycetous fungi: culturing, polyketide and shikimatemetabolite production, and PKS genes, Nat. Prod. Rep., vol.23, issue.1, pp.188-585, 2008.
DOI : 10.1080/713609311

R. Van-den-berg, H. Hoefsloot, and J. Westerhuis, Centering, scaling, and 587 transformations: improving the biological information content of metabolomics data, BMC Genomics, vol.588, issue.7, pp.142-152, 2006.

T. Vu, D. Catheline, and D. Delmail, Abstract, The Lichenologist, vol.63, issue.04, pp.323-337, 0591.
DOI : 10.1016/S0163-7827(02)00003-6

URL : https://hal.archives-ouvertes.fr/hal-01955445

P. Wieners, W. Bilger, and Y. Gauslaa, Carbon-based secondary compounds in the lichen Hypogymnia physodes deter detrivorous woodlice, Fungal Ecology, vol.31, pp.54-58, 2018.
DOI : 10.1016/j.funeco.2017.11.002

I. Yosioka, K. Hino, M. Fujio, and I. Kitagawa, The Structure of Caloploicin, a New Lichen Trichloro-depsidone, CHEMICAL & PHARMACEUTICAL BULLETIN, vol.21, issue.7, pp.1547-1553, 1973.
DOI : 10.1248/cpb.21.1547

, Ap= apothecia, Ce= cephalodia, Ph= phyllocladia, Pa= algal layer of pseudopodetia and Pf= fungal axis of pseudopodetia): secondary metabolites, free sugars and polyols, amino acids, fatty acids and sugar forming polysaccharides. Values are means (n=3 replicates) in mg.g -1 dry mass with (minimum -maximum) in brackets, except the secondary metabolites, which are expressed in Area Under the Curve (samples: 0.5 mg.ml -1 ) *extraction yield (x10 5 ) Total polysaccharides (Total PS) and total nitrogen (TN) are expressed in percentage of DM. The sign, Table 1 Data set of the compounds identified in the four parts of the lichen Argopsis friesiana

S. Metabolites,

. Argopsin,

, Caloploicin

F. Sugars and /. Polyols,

. Arabinose,

, Arabitol

, Mannitol

. Myo-inositol,

. Sucrose,

, Sorbitol, vol.16

. Trehalose,

, Xylitol, vol.19

. Free-amino-acids,

. Arginine,

, Glutamine

, Glutamate

, Glycine

, Lysine

, Phenylalanine

, Proline

. Serine,

. Tryptophan,

, Table1 Click here to download Table Tables Argopsis GADEA- JCE2

, Total Saturated

, C16:3 n-3 - - 0

, C18:3

, C16:1

, C18:1

, C16:1

, C18:1

. Faunsat,

. Faunsat,

. Faunsat,

. Faunsat,

, Total Unsaturated

, Sugars Forming Polysaccharides: Ap Pf Ph

. Arabinose,

. Fucose,

. Galactose,

, Glucose

. Mannose,

. Rhamnose,

. Xylose,

, Total PS