A. L. Camus and . Chênes, Monographie du Genre Quercus et Monographie du Genre Lithocarpus (P. Lechevalier, 1954.

W. B. Logan, Oak: The Frame of Civilization, 2005.

P. S. Manos and A. M. Stanford, The Historical Biogeography of Fagaceae: Tracking the Tertiary History of Temperate and Subtropical Forests of the Northern Hemisphere, International Journal of Plant Sciences, vol.162, issue.S6, pp.77-93, 2001.
DOI : 10.1086/323280

T. G. Whitham and C. N. Slobodchikoff, Evolution by individuals, plant-herbivore interactions, and mosaics of genetic variability: The adaptive significance of somatic mutations in plants, Oecologia, vol.110, issue.176, pp.287-292, 1981.
DOI : 10.1093/aesa/63.5.1400

H. J. Folse and J. Roughgarden, DIRECT BENEFITS OF GENETIC MOSAICISM AND INTRAORGANISMAL SELECTION: MODELING COEVOLUTION BETWEEN A LONG-LIVED TREE AND A SHORT-LIVED HERBIVORE, Evolution, vol.72, issue.4, pp.1091-1113, 2012.
DOI : 10.2307/2260073

M. Pineda-krch and T. Fagerström, On the potential for evolutionary change in meristematic cell lineages through intraorganismal selection, Journal of Evolutionary Biology, vol.49, issue.4, pp.681-688, 1999.
DOI : 10.1007/BF00347587

A. Padovan, Transcriptome sequencing of two phenotypic mosaic Eucalyptus trees reveals large scaletranscriptome re-modelling, PLoS ONE, vol.10, p.123226, 2015.

C. Bodénès, E. Chancerel, F. Ehrenmann, A. Kremer, and C. Plomion, High-density linkage mapping and distribution of segregation distortion regions in the oak genome, DNA Research, vol.1, issue.2, pp.115-124, 2016.
DOI : 10.1111/j.1365-3040.2006.01629.x

J. Chen, S. Gl, and M. Lascoux, Genetic Diversity and the Efficacy of Purifying Selection across Plant and Animal Species, Molecular Biology and Evolution, vol.7, issue.6, pp.1417-1428, 2017.
DOI : 10.1371/journal.pgen.1002092

C. L. Brown, R. G. Mcalpine, and P. P. Kormanik, APICAL DOMINANCE AND FORM IN WOODY PLANTS: A REAPPRAISAL, American Journal of Botany, vol.11, issue.2, pp.153-162, 1967.
DOI : 10.1111/j.1399-3054.1958.tb08426.x

K. Cibulskis, Sensitive detection of somatic point mutations in impure and heterogeneous cancer samples, Nature Biotechnology, vol.27, issue.3, pp.213-219, 2013.
DOI : 10.1093/bioinformatics/btr446

E. Schmid-siegert, Low number of fixed somatic mutations in a long-lived oak tree, Nature Plants, vol.25, issue.12, pp.926-929, 2017.
DOI : 10.1093/bioinformatics/btp352

D. E. Gill, L. Chao, S. L. Perkins, and J. B. Wolj, Genetic Mosaicism in Plants and Clonal Animals, Annual Review of Ecology and Systematics, vol.26, issue.1, pp.423-444, 1995.
DOI : 10.1146/annurev.es.26.110195.002231

F. Murat, A. Armero, C. Pont, C. Klopp, and J. Salse, Reconstructing the genome of the most recent common ancestor of flowering plants, Nature Genetics, vol.8, issue.4, pp.490-496, 2017.
DOI : 10.1093/bioinformatics/bti551

URL : https://hal.archives-ouvertes.fr/hal-01605642

O. Jaillon, The grapevine genome sequence suggests ancestral hexaploidization in major angiosperm phyla, Nature, vol.449, pp.463-467, 2007.
URL : https://hal.archives-ouvertes.fr/inria-00180136

, The International Peach Genome Initiative et al. The high-quality draft genome of peach (Prunus persica) identifies unique patterns of genetic diversity, domestication and genome evolution, Nat. Genet, vol.45, pp.487-494, 2013.

X. Argout, The genome of Theobroma cacao, Nature Genetics, vol.11, issue.2, pp.101-108, 2011.
DOI : 10.1101/gr.1224503

URL : https://hal.archives-ouvertes.fr/hal-00855922

J. Salse, Ancestors of modern plant crops, Current Opinion in Plant Biology, vol.30, pp.134-142, 2016.
DOI : 10.1016/j.pbi.2016.02.005

F. Murat, Karyotype and Gene Order Evolution from Reconstructed Extinct Ancestors Highlight Contrasts in Genome Plasticity of Modern Rosid Crops, Genome Biology and Evolution, vol.31, issue.4, pp.735-749, 2015.
DOI : 10.1093/nar/gkg201

Q. Li, Explosive Tandem and Segmental Duplications of Multigenic Families in Eucalyptus grandis, Genome Biology and Evolution, vol.371, issue.3, pp.1068-1081, 2015.
DOI : 10.1016/j.bbrc.2008.04.087

K. Hanada, C. Zou, M. D. Lehti-shiu, K. Shinozaki, and S. Shiu, Importance of Lineage-Specific Expansion of Plant Tandem Duplicates in the Adaptive Response to Environmental Stimuli, PLANT PHYSIOLOGY, vol.148, issue.2, pp.993-1003, 2008.
DOI : 10.1104/pp.108.122457

Y. Zhang, R. Xia, H. Kuang, and B. C. Meyers, Defense Genes Directs the Evolution of MicroRNAs That Target Them, Molecular Biology and Evolution, vol.8, issue.10, pp.2692-2705, 2016.
DOI : 10.1007/s11427-012-4281-3

J. H. Mun, H. J. Yu, S. Park, and B. S. Park, Genome-wide identification of NBS-encoding resistance genes in Brassica rapa, Molecular Genetics and Genomics, vol.271, issue.6, pp.617-631, 2009.
DOI : 10.1093/oxfordjournals.molbev.a026248

F. Jupe, Identification and localisation of the NB-LRR gene family within the potato genome, BMC Genomics, vol.13, issue.1, p.75, 2012.
DOI : 10.1093/bioinformatics/bti713

I. Fischer, A. Diévart, G. Droc, J. Dufayard, and N. Chantret, Evolutionary dynamics of the Leucine-Rich Repeats Receptor-Like Kinase (LRR-RLK) subfamily in angiosperms., Plant Physiology, vol.170, pp.1595-1610, 2016.
DOI : 10.1104/pp.15.01470

C. Greeff, M. Roux, J. Mundy, and M. Petersen, Receptor-like kinase complexes in plant innate immunity, Frontiers in Plant Science, vol.3, pp.1-7, 2012.
DOI : 10.3389/fpls.2012.00209

URL : https://www.frontiersin.org/articles/10.3389/fpls.2012.00209/pdf

R. G. Fitzjohn, How much of the world is woody?, Journal of Ecology, vol.506, issue.5, pp.1266-1272, 2014.
DOI : 10.1038/nature12872

W. Gassmann, M. E. Hinsch, and B. J. Staskawicz, The Arabidopsis RPS4 bacterial-resistance gene is a member of the TIR-NBS-LRR family of disease-resistance genes, The Plant Journal, vol.4, issue.3, pp.265-277, 1999.
DOI : 10.1073/pnas.95.13.7819

J. E. Parker, The Arabidopsis Downy Mildew Resistance Gene RPP5 Shares Similarity to the Toll and Interleukin-1 Receptors with N and L6, THE PLANT CELL ONLINE, vol.9, issue.6, pp.879-894, 1997.
DOI : 10.1105/tpc.9.6.879

P. Enkhbayar, M. Kamiya, M. Osaki, T. Matsumoto, and N. Matsushima, Structural principles of leucine-rich repeat (LRR) proteins, Proteins: Structure, Function, and Bioinformatics, vol.539, issue.3, pp.394-403, 2004.
DOI : 10.1016/S0014-5793(03)00177-7

P. A. Tobias and D. I. Guest, Tree immunity: growing old without antibodies, Trends in Plant Science, vol.19, issue.6, pp.367-370, 2014.
DOI : 10.1016/j.tplants.2014.01.011

J. D. Jones and J. L. Dangl, The plant immune system, Nature, vol.308, issue.7117, pp.323-329, 2006.
DOI : 10.1126/science.1111404

A. Kremer, Genome Mapping and Molecular Breeding in Plants: Forest Trees, vol.7, pp.165-187, 2007.

C. Bodénès, Comparative mapping in the Fagaceae and beyond with EST-SSRs, BMC Plant Biology, vol.12, issue.1, p.153, 2012.
DOI : 10.1186/1471-2164-12-292

C. Bodénès, E. Chancerel, F. Ehrenmann, A. Kremer, and C. Plomion, High-density linkage mapping and distribution of segregation distortion regions in the oak genome, DNA Research, vol.1, issue.2, pp.115-124, 2016.
DOI : 10.1111/j.1365-3040.2006.01629.x

F. Rampant and P. , Analysis of BAC end sequences in oak, a keystone forest tree species, providing insight into the composition of its genome, BMC Genomics, vol.406, issue.4, p.292, 2011.
DOI : 10.1093/nar/gkp985

I. Lesur, A sample view of the pedunculate oak (Quercus robur) genome from the sequencing of hypomethylated and random genomic libraries, Tree Genetics & Genomes, vol.7, issue.2, pp.1277-1285, 2011.
DOI : 10.1046/j.1365-313X.1995.07010175.x

C. Saintagne, Distribution of genomic regions differentiating oak species assessed by QTL detection, Heredity, vol.265, issue.Suppl. 1, pp.20-30, 2004.
DOI : 10.1007/s004380000420

C. Scotti-saintagne, Detection of quantitative trait loci controlling bud burst and height growth in Quercus robur L., Theoretical and Applied Genetics, vol.136, issue.1, pp.1648-1659, 2004.
DOI : 10.1093/treephys/23.13.931

C. Scotti-saintagne, E. Bertocchi, T. Barreneche, A. Kremer, and C. Plomion, Quantitative trait loci mapping for vegetative propagation in pedunculate oak, Annals of Forest Science, vol.62, issue.4, pp.369-374, 2005.
DOI : 10.1051/forest:2005032

URL : https://hal.archives-ouvertes.fr/hal-00883894

O. Gailing, ), Plant Biology, vol.154, issue.5, pp.624-634, 2008.
DOI : 10.1111/j.0014-3820.2002.tb01337.x

O. Gailing, R. Langenfeld-heyser, A. Polle, and R. Finkeldey, progeny: implications for the adaptation to changing environments, Global Change Biology, vol.7, issue.8, pp.1934-1946, 2008.
DOI : 10.1038/hdy.1992.131

M. Casasoli, Comparison of Quantitative Trait Loci for Adaptive Traits Between Oak and Chestnut Based on an Expressed Sequence Tag Consensus Map, Genetics, vol.172, issue.1, pp.533-546, 2006.
DOI : 10.1534/genetics.105.048439

J. Parelle, Quantitative trait loci of tolerance to waterlogging in a European oak (Quercus robur L.): physiological relevance and temporal effect patterns, Plant, Cell & Environment, vol.136, issue.4, pp.422-434, 2007.
DOI : 10.1007/s00122-004-1851-1

URL : https://hal.archives-ouvertes.fr/hal-00341591

O. Brendel, Quantitative trait loci controlling water use efficiency and related traits in Quercus robur L., Tree Genetics & Genomes, vol.9, issue.2, pp.263-278, 2008.
DOI : 10.1016/S0176-1617(11)81192-2

URL : https://hal.archives-ouvertes.fr/hal-01032066

J. Derory, Contrasting relationships between the diversity of candidate genes and variation of bud burst in natural and segregating populations of European oaks, Heredity, vol.136, issue.5, pp.438-448, 2010.
DOI : 10.2307/2408641

URL : https://hal.archives-ouvertes.fr/hal-01084548

J. Song, X-ray computed tomography to decipher the genetic architecture of tree branching traits: oak as a case study, Tree Genetics & Genomes, vol.36, issue.1, 2017.
DOI : 10.1139/x06-103

URL : https://hal.archives-ouvertes.fr/hal-01530800

J. Rani, P. Chauhan, R. Tripathi, and . Li-fi, Light Fidelity)?the future technology in wireless communication, Int. J. Appl. Eng. Res, vol.7, pp.1517-1520, 2012.

H. Zhang, Construction of BIBAC and BAC libraries from a variety of organisms for advanced genomics research, Nature Protocols, vol.54, issue.3, pp.479-499, 2012.
DOI : 10.1006/geno.1996.0268

C. Plomion, Decoding the oak genome: public release of sequence data, assembly, annotation and publication strategies, Molecular Ecology Resources, vol.10, issue.1, pp.254-265, 2016.
DOI : 10.1186/1471-2164-10-347

URL : https://hal.archives-ouvertes.fr/hal-01579667

G. Marçais and C. Kingsford, A fast, lock-free approach for efficient parallel counting of occurrences of k-mers, Bioinformatics, vol.78, issue.6, pp.764-770, 2011.
DOI : 10.1103/PhysRevE.78.061912

M. D. Adams, The Genome Sequence of Drosophila melanogaster, Science, vol.287, issue.5461, pp.2185-2195, 2000.
DOI : 10.1126/science.287.5461.2185

J. T. Simpson and R. Durbin, Efficient construction of an assembly string graph using the FM-index, Bioinformatics, vol.18, issue.5, pp.367-373, 2010.
DOI : 10.1101/gr.074492.107

M. Boetzer and W. Pirovano, SSPACE-LongRead: scaffolding bacterial draft genomes using long read sequence information, BMC Bioinformatics, vol.15, issue.1, p.211, 2014.
DOI : 10.1186/1471-2105-13-238

N. Joshi and J. Fass, Sickle: a sliding-window, adaptive, quality-based trimming tool for FastQ files, 2011.

, NATurE PlANTS

R. Luo, SOAPdenovo2: an empirically improved memory-efficient short-read de novo assembler, GigaScience, vol.431, issue.6, p.18, 2012.
DOI : 10.1038/nature03062

I. Korf, Gene finding in novel genomes, BMC Bioinformatics, vol.5, issue.59, 2004.

S. Huang, HaploMerger: Reconstructing allelic relationships for polymorphic diploid genome assemblies, Genome Research, vol.22, issue.8, pp.1581-1588, 2012.
DOI : 10.1101/gr.133652.111

G. Benson, Tandem repeats finder: a program to analyze DNA sequences, Nucleic Acids Research, vol.272, issue.5269, pp.573-578, 1999.
DOI : 10.1126/science.272.5269.1755

A. F. Smit, R. Hubley, P. Green, and . Repeatmasker, , 1996.

A. Morgulis, E. M. Gertz, A. A. Schäffer, and R. Agarwala, A Fast and Symmetric DUST Implementation to Mask Low-Complexity DNA Sequences, Journal of Computational Biology, vol.13, issue.5
DOI : 10.1089/cmb.2006.13.1028

, J. Comput. Biol, vol.13, pp.1028-1040, 2006.

A. L. Price, N. C. Jones, and P. A. Pevzner, De novo identification of repeat families in large genomes, Bioinformatics, vol.21, issue.Suppl 1, pp.351-358, 2005.
DOI : 10.1093/bioinformatics/bti1018

F. A. Simão, BUSCO: assessing genome assembly and annotation completeness with single-copy orthologs, Bioinformatics, vol.31, issue.19, pp.3210-3212, 2015.
DOI : 10.1093/nar/gks1116

T. Flutre, E. Duprat, C. Feuillet, and H. Quesneville, Considering Transposable Element Diversification in De Novo Annotation Approaches, PLoS ONE, vol.25, issue.3, p.16526, 2011.
DOI : 10.1371/journal.pone.0016526.s021

URL : https://hal.archives-ouvertes.fr/hal-00956366

C. Hoede, PASTEC: An Automatic Transposable Element Classification Tool, PLoS ONE, vol.7, issue.10, p.91929, 2014.
DOI : 10.1371/journal.pone.0091929.s012

H. Quesneville, Combined Evidence Annotation of Transposable Elements in Genome Sequences, PLoS Computational Biology, vol.16, issue.2, pp.166-175, 2005.
DOI : 1367-4803(2000)016[1040:MAPETR]2.0.CO;2

URL : https://hal.archives-ouvertes.fr/hal-00009013

R. Edgar and E. Myers, PILER: identification and classification of genomic repeats, Bioinformatics, vol.21, issue.Suppl 1, pp.152-158, 2005.
DOI : 10.1093/bioinformatics/bti1003

Z. Bao and S. Eddy, Automated De Novo Identification of Repeat Sequence Families in Sequenced Genomes, Genome Research, vol.12, issue.8, pp.1269-1276, 2002.
DOI : 10.1101/gr.88502

X. Huang, On global sequence alignment, Bioinformatics, vol.10, issue.3, pp.227-235, 1994.
DOI : 10.1093/bioinformatics/10.3.227

J. Jurka, Repbase Update, a database of eukaryotic repetitive elements, Cytogenetic and Genome Research, vol.5, issue.1-4, pp.462-467, 2005.
DOI : 10.1016/S1360-1385(02)02372-5

R. D. Finn, Pfam: the protein families database, Nucleic Acids Research, vol.42, issue.D1, pp.222-230, 2014.
DOI : 10.1093/nar/gks1200

URL : https://hal.archives-ouvertes.fr/hal-01294685

I. Ahmed, A. Sarazin, C. Bowler, V. Colot, and H. Quesneville, Genome-wide evidence for local DNA methylation spreading from small RNA-targeted sequences in Arabidopsis, Nucleic Acids Research, vol.17, issue.16, pp.6919-6931, 2011.
DOI : 10.1016/j.gde.2007.08.010

URL : https://academic.oup.com/nar/article-pdf/39/16/6919/16774715/gkr324.pdf

S. Foissac, Genome Annotation in Plants and Fungi: EuGene as a Model Platform, Current Bioinformatics, vol.3, issue.2, pp.87-97, 2008.
DOI : 10.2174/157489308784340702

T. Schiex, A. Moisan, and P. Rouzé, Eug??ne: An Eukaryotic Gene Finder That Combines Several Sources of Evidence, Computational Biology, pp.111-125, 2001.
DOI : 10.1007/3-540-45727-5_10

URL : http://www.inra.fr/bia/T/schiex/Doc/../Export/LNCS-EuGene.pdf

S. Degroeve, Y. Saeys, B. De-baets, P. Rouzé, and Y. Van-de-peer, SpliceMachine: predicting splice sites from high-dimensional local context representations, Bioinformatics, vol.297, issue.5, pp.1332-1338, 2005.
DOI : 10.1006/jmbi.2000.3641

URL : https://academic.oup.com/bioinformatics/article-pdf/21/8/1332/691534/bti166.pdf

I. Lesur, The oak gene expression atlas: insights into Fagaceae genome evolution and the discovery of genes regulated during bud dormancy release, BMC Genomics, vol.16, issue.1, p.112, 2015.
DOI : 10.1073/pnas.0506580102

URL : http://doi.org/10.1186/s12864-015-1331-9

E. Quevillon, InterProScan: protein domains identifier, Nucleic Acids Research, vol.33, issue.Web Server, pp.116-120, 2005.
DOI : 10.1093/nar/gki442

URL : https://academic.oup.com/nar/article-pdf/33/suppl_2/W116/7623230/gki442.pdf

A. Krogh, B. Larsson, G. Von-heijne, and E. Sonnhammer, Predicting transmembrane protein topology with a hidden markov model: application to complete genomes11Edited by F. Cohen, Journal of Molecular Biology, vol.305, issue.3, pp.567-580, 2001.
DOI : 10.1006/jmbi.2000.4315

M. Kanehisa, S. Goto, M. Furumichi, M. Tanabe, and M. Hirakawa, KEGG for representation and analysis of molecular networks involving diseases and drugs, Nucleic Acids Research, vol.22, issue.suppl_1, pp.355-360, 2010.
DOI : 10.1016/S0968-0004(97)01130-4

URL : https://academic.oup.com/nar/article-pdf/38/suppl_1/D355/11217922/gkp896.pdf

A. Marchler-bauer, CDD: specific functional annotation with the Conserved Domain Database, Nucleic Acids Research, vol.25, issue.17, pp.205-210, 2009.
DOI : 10.1093/nar/25.17.3389

URL : https://academic.oup.com/nar/article-pdf/37/suppl_1/D205/3314668/gkn845.pdf

R. L. Tatusov, The COG database: an updated version includes eukaryotes, BMC Bioinformatics, vol.4, issue.1, p.41, 2003.
DOI : 10.1186/1471-2105-4-41

D. M. Goodstein, Phytozome: a comparative platform for green plant genomics, Nucleic Acids Research, vol.10, issue.D1, pp.1178-1186, 2012.
DOI : 10.1101/gr.10.4.516

URL : https://academic.oup.com/nar/article-pdf/40/D1/D1178/16957607/gkr944.pdf

B. Langmead and S. L. Salzberg, Fast gapped-read alignment with Bowtie 2, Nature Methods, vol.9, issue.4, pp.357-359, 2012.
DOI : 10.1093/bioinformatics/btp352

URL : http://europepmc.org/articles/pmc3322381?pdf=render

H. Li, The Sequence Alignment/Map format and SAMtools, Bioinformatics, vol.9, issue.11, pp.2078-2079, 2009.
DOI : 10.1146/annurev.genom.9.081307.164359

URL : https://academic.oup.com/bioinformatics/article-pdf/25/16/2078/531810/btp352.pdf

E. Guichoux, L. Lagache, S. Wagner, P. Léger, and R. J. Petit, Two highly validated multiplexes (12-plex and 8-plex) for species delimitation and parentage analysis in oaks (Quercus spp.), Molecular Ecology Resources, vol.143, issue.3, pp.578-585, 2011.
DOI : 10.1080/11263500902723129

J. Wang, coancestry: a program for simulating, estimating and analysing relatedness and inbreeding coefficients, Molecular Ecology Resources, vol.89, issue.1, pp.141-145, 2011.
DOI : 10.1111/j.1755-0998.2010.02885.x

L. Lagache, J. B. Leger, J. J. Daudin, R. J. Petit, and C. Vacher, Putting the Biological Species Concept to the Test: Using Mating Networks to Delimit Species, PLoS ONE, vol.88, issue.6, pp.1-11, 2013.
DOI : 10.1371/journal.pone.0068267.s001

URL : https://hal.archives-ouvertes.fr/hal-01001112

D. Falush, M. Stephens, and J. K. Pritchard, Inference of population structure using multilocus genotype data: dominant markers and null alleles, Molecular Ecology Notes, vol.298, issue.4, pp.574-578, 2007.
DOI : 10.1126/science.1078311

A. Futschik and C. Schlötterer, The Next Generation of Molecular Markers From Massively Parallel Sequencing of Pooled DNA Samples, Genetics, vol.186, issue.1, pp.207-218, 2010.
DOI : 10.1534/genetics.110.114397

R. Kofler, R. V. Pandey, and C. Schlötterer, PoPoolation2: identifying differentiation between populations using sequencing of pooled DNA samples (Pool-Seq), Bioinformatics, vol.7, issue.3, pp.3435-3436, 2011.
DOI : 10.1371/journal.pgen.1001336

URL : https://academic.oup.com/bioinformatics/article-pdf/27/24/3435/870592/btr589.pdf

R. Kofler, PoPoolation: A Toolbox for Population Genetic Analysis of Next Generation Sequencing Data from Pooled Individuals, PLoS ONE, vol.116, issue.1, p.15925, 2011.
DOI : 10.1371/journal.pone.0015925.s002

H. Li, Aligning sequence reads, clone sequences and assembly contigs with BWA-MEM. Preprint at https://arxiv.org/abs/1303, p.3997, 2013.

J. Salse, M. Abrouk, F. Murat, U. M. Quraishi, and C. Feuillet, Improved criteria and comparative genomics tool provide new insights into grass paleogenomics, Briefings in Bioinformatics, vol.49, issue.4, pp.619-630, 2009.
DOI : 10.1111/j.1365-313X.2006.02991.x

URL : https://hal.archives-ouvertes.fr/hal-00964321

Z. Yang, PAML 4: Phylogenetic Analysis by Maximum Likelihood, Molecular Biology and Evolution, vol.24, issue.8, pp.1586-1591, 2007.
DOI : 10.1093/molbev/msm088

URL : https://academic.oup.com/mbe/article-pdf/24/8/1586/3853532/msm088.pdf

L. Li, C. J. Stoeckert, and D. S. Roos, OrthoMCL: Identification of Ortholog Groups for Eukaryotic Genomes, Genome Research, vol.13, issue.9, pp.2178-2189, 2003.
DOI : 10.1101/gr.1224503

URL : http://genome.cshlp.org/content/13/9/2178.full.pdf

E. M. Zdobnov and R. Apweiler, InterProScan - an integration platform for the signature-recognition methods in InterPro, Bioinformatics, vol.17, issue.9, pp.847-848, 2001.
DOI : 10.1093/bioinformatics/17.9.847

URL : https://academic.oup.com/bioinformatics/article-pdf/17/9/847/540089/170847.pdf

T. De-bie, N. Cristianini, J. P. Demuth, and M. W. Hahn, CAFE: a computational tool for the study of gene family evolution, Bioinformatics, vol.278, issue.5338, pp.1269-1271, 2006.
DOI : 10.1126/science.278.5338.631

M. V. Han, G. W. Thomas, J. Lugo-martinez, and M. W. Hahn, Estimating Gene Gain and Loss Rates in the Presence of Error in Genome Assembly and Annotation Using CAFE 3, Molecular Biology and Evolution, vol.450, issue.8, pp.1987-1997, 2013.
DOI : 10.1038/nature06340

R. C. Edgar, MUSCLE: a multiple sequence alignment method with reduced time and space complexity, BMC Bioinformatics, vol.5, issue.1, p.113, 2004.
DOI : 10.1186/1471-2105-5-113

M. L. Borowiec, Table S2: Table containing benchmark times reported in the manuscript, PeerJ, vol.24, p.1660, 2016.
DOI : 10.7717/peerj.1660/supp-2

Y. Hochberg and Y. Benjamini, More powerful procedures for multiple significance testing, Statistics in Medicine, vol.63, issue.7, pp.811-818, 1990.
DOI : 10.1093/biomet/69.3.493

T. Sasaki, N. Massaki, and T. Kubo, Wolbachia variant that induces two distinct reproductive phenotypes in different hosts, Heredity, vol.261, issue.5, pp.389-393, 2005.
DOI : 10.1098/rspb.1995.0117

URL : https://www.nature.com/articles/6800737.pdf

A. Alexa, J. Rahnenführer, and T. Lengauer, Improved scoring of functional groups from gene expression data by decorrelating GO graph structure, Bioinformatics, vol.4, issue.4, pp.1600-1607, 2006.
DOI : 10.1186/gb-2003-4-4-r28

URL : https://academic.oup.com/bioinformatics/article-pdf/22/13/1600/482171/btl140.pdf

E. Lee, Web Apollo: a web-based genomic annotation editing platform, Genome Biology, vol.14, issue.8, p.93, 2013.
DOI : 10.1093/bioinformatics/btp120

URL : https://genomebiology.biomedcentral.com/track/pdf/10.1186/gb-2013-14-8-r93

A. Kalderimis, InterMine: extensive web services for modern biology, Nucleic Acids Research, vol.3, issue.Database issue, pp.468-472, 2014.
DOI : 10.1093/nar/gkn923

URL : https://academic.oup.com/nar/article-pdf/42/W1/W468/17422978/gku301.pdf

/. Splicemachine, P. Signl, and . Samtools, Typer Viewer v4.0.26.75 / topGO 2.22.0 / tandem repeatsFinder / trimAl gt 0.2 / STAR 2.4.0i / tRNAscan-SE / taxize / TreeeDyn v198.3 / YASS For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors/reviewers upon request, We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Research guidelines for submitting code & software for further information