M. D. Abràmoff, P. J. Magalhães, R. , and S. J. , Image processing with ImageJ, Biophotonics Int, vol.11, pp.36-42, 2004.

J. Y. Anchang, E. O. Ananga, and R. Pu, An efficient unsupervised index based approach for mapping urban vegetation from IKONOS imagery, International Journal of Applied Earth Observation and Geoinformation, vol.50, pp.211-220, 2016.
DOI : 10.1016/j.jag.2016.04.001

D. Barthélémy, C. , and Y. , Plant Architecture: A Dynamic, Multilevel and Comprehensive Approach to Plant Form, Structure and Ontogeny, Annals of Botany, vol.7, issue.C, pp.375-407, 2007.
DOI : 10.1007/BF01928366

D. Bates, M. Maechler, B. Bolker, and S. Walker, lme4: Linear mixed-effects models using 'Eigen' and S4, 2016.

R. Bivand, H. Ono, R. Dunlap, and M. Stigler, classInt: Choose Univariate Class Intervals (Version 0.1?23). https://cran.r-project. org/package=classInt, pp.432-440, 2015.

G. Dijksterhuis, Assessing panel consonance, Food Quality and Preference, vol.6, issue.1, pp.7-140950, 1995.
DOI : 10.1016/0950-3293(94)P4207-M

N. Donès, B. Adam, and H. Sinoquet, PiafDigit?software to drive a Polhemus Fastrak 3 SPACE 3D digitiser and for the acquisition of plant architecture, 2006.

J. B. Durand, Y. Guédon, Y. Caraglio, C. , and E. , Analysis of the plant architecture via tree-structured statistical models: the hidden Markov tree models, New Phytologist, vol.10, issue.3, pp.813-825, 2005.
DOI : 10.1080/14620316.1997.11515539

URL : https://hal.archives-ouvertes.fr/hal-00017402

N. Fay, ENVIRONMENTAL ARBORICULTURE, TREE ECOLOGY AND VETERAN TREE MANAGEMENT, Arboricultural Journal, vol.4, issue.3, pp.213-238, 2002.
DOI : 10.1079/9780851994420.0000

URL : http://www.treeworks.co.uk/downloads/3 - ENVIRONMENTAL ARBORICULTURE TREE ECOLOGY.pdf

A. Ferrante, A. Trivellini, D. Scuderi, D. Romano, and P. Vernieri, Post-production physiology and handling of ornamental potted plants, Postharvest Biology and Technology, vol.100, pp.99-108, 2015.
DOI : 10.1016/j.postharvbio.2014.09.005

P. Ferraro and C. Godin, A distance measure between plant architectures, Annals of Forest Science, vol.57, issue.5, pp.445-461, 2000.
DOI : 10.1051/forest:2000134

URL : https://hal.archives-ouvertes.fr/hal-00883353

P. Ferraro and C. Godin, An Edit Distance between Quotiented Trees, Algorithmica, vol.36, issue.1, pp.1-39, 2003.
DOI : 10.1007/s00453-002-1002-5

URL : https://hal.archives-ouvertes.fr/hal-00307409

C. J. Findlay, J. C. Castura, and I. Lesschaeve, Feedback calibration: A training method for descriptive panels. Food Qual. and Pref, pp.321-328, 2007.
DOI : 10.1016/j.foodqual.2006.02.007

J. Fox, S. Weisberg, D. Adler, D. Bates, G. Baud-bovy et al., The Car, 2016.
DOI : 10.1007/978-1-4302-4843-9_7

G. Galopin, J. Mauget, and P. Morel, Analyse morphog??n??tique de la variabilit?? ph??notypique de l???unit?? architecturale d???Hydrangea macrophylla, Annals of Forest Science, vol.102, issue.3, pp.309-320, 2010.
DOI : 10.1007/BF02488563

M. Garbez, Y. Chéné, É. Belin, M. Sigogne, J. M. Labatte et al., Predicting sensorial attribute scores of ornamental plants assessed in 3D through rotation on video by image analysis: A study on the morphology of virtual rose bushes, Computers and Electronics in Agriculture, vol.121, pp.331-346, 2016.
DOI : 10.1016/j.compag.2016.01.001

URL : https://hal.archives-ouvertes.fr/hal-01388779

M. Garbez, G. Galopin, M. Sigogne, P. Favre, S. Demotes-mainard et al., Assessing the visual aspect of rotating virtual rose bushes by a labeled sorting task. Food Qual. and Pref, pp.287-295, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01169242

C. Godin, C. , and Y. , A Multiscale Model of Plant Topological Structures, Journal of Theoretical Biology, vol.191, issue.1, pp.1-46, 1998.
DOI : 10.1006/jtbi.1997.0561

URL : https://hal.archives-ouvertes.fr/hal-00827484

Q. J. Guzmán and R. A. Cordero, Neighbourhood structure and light availability influence the variations in plant design of shrubs in two cloud forests of different successional status, Annals of Botany, vol.33, issue.1, pp.23-34, 2016.
DOI : 10.2307/2484833

F. Hallé, R. A. Oldeman, and P. B. Tomlinson, Tropical Trees and Forests: an Architectural Analysis, 1978.
DOI : 10.1007/978-3-642-81190-6

. Garbez, Ornamental plants architectural characteristics in relation to visual sensory attributes Hennig Dissolution point and isolation robustness: robustness criteria for general cluster analysis methods, C. J. Multivar, 2008.

. Anal, , pp.1154-1176

C. Hennig, fpc: Flexible Procedures for Clustering (Version 2.1-10) Retrieved from https, 2015.

J. S. Higginbotham, Want to sell to supermarkets? Think like a supermarket buyer, Amer. Nurseryman, vol.165, pp.133-139, 1987.

L. Huché-thélier, R. Boumaza, S. Demotes-mainard, A. Canet, R. Symoneaux et al., Nitrogen deficiency increases basal branching and modifies visual quality of the rose bushes, Scientia Horticulturae, vol.130, issue.1, pp.325-334, 2011.
DOI : 10.1016/j.scienta.2011.07.007

F. Husson, J. Josse, S. Lê, and J. Mazet, FactoMineR: Multivariate exploratory data analysis and data mining with R (Version 1.31.5), 2016.

H. T. Ishii, E. D. Ford, and M. C. Kennedy, Physiological and ecological implications of adaptive reiteration as a mechanism for crown maintenance and longevity, Tree Physiology, vol.27, issue.3, pp.455-462, 2007.
DOI : 10.1093/treephys/27.3.455

K. Kawamura and H. Takeda, species: inherent growth rules versus degree of plasticity in light response, Canadian Journal of Botany, vol.106, issue.10, pp.1063-1077, 2002.
DOI : 10.1007/BF02345972

K. Kawamura and H. Takeda, in a low-light understory: a quantitative analysis of architecture, Canadian Journal of Botany, vol.106, issue.3, pp.329-339, 2004.
DOI : 10.1007/BF02345972

K. Kawamura, L. Hibrand-saint-oyant, T. Thouroude, J. Jeauffre, and F. Foucher, Inheritance of garden rose architecture and its association with flowering behaviour, Tree Genetics & Genomes, vol.30, issue.2, pp.1-12, 2015.
DOI : 10.1007/s11105-011-0396-0

URL : https://hal.archives-ouvertes.fr/hal-01392651

L. Kohsel and B. S. Bennedsen, PERFORMANCE OF HUMAN EXPERTS GRADING POT ROSES IN A COMMERCIAL ENVIRONMENT, Acta Horticulturae, vol.562, issue.562, pp.273-283, 2001.
DOI : 10.17660/ActaHortic.2001.562.32

M. Kuhn, CARET: Classification and Regression Training (Version 6.0-68), 2016.

M. Kuhn, J. , and K. , Applied Predictive Modeling, 2013.
DOI : 10.1007/978-1-4614-6849-3

A. Kuznetsova, R. H. Christensen, C. Bavay, and P. B. Brockhoff, Automated mixed ANOVA modeling of sensory and consumer data. Food Qual. and Pref, pp.31-38, 2015.

D. Labbe, A. Rytz, and A. Hugi, Training is a critical step to obtain reliable product profiles in a real food industry context, Food Quality and Preference, vol.15, issue.4, 2004.
DOI : 10.1016/S0950-3293(03)00081-8

F. Qual and . Pref, , pp.341-348

Ø. Langsrud, ANOVA for unbalanced data: Use Type II instead of Type III sums of squares, Statistics and Computing, vol.13, issue.2, pp.163-167, 2003.
DOI : 10.1023/A:1023260610025

L. Bris, M. Champeroux, A. Bearez, P. , L. Page-degivry et al., Basipetal Gradient of Axillary Bud Inhibition Along a Rose (Rosa hybridaL.) Stem: Growth Potential of Primary Buds and their Two Most Basal Secondary Buds as Affected by Position and Age, Annals of Botany, vol.81, issue.2, pp.301-309, 1998.
DOI : 10.1006/anbo.1997.0558

N. Leduc, H. Roman, F. Barbier, T. Péron, . Lh.-t et al., Light Signaling in Bud Outgrowth and Branching in Plants, Plants, vol.17, issue.2, pp.223-250, 2014.
DOI : 10.1104/pp.118.1.27

URL : https://hal.archives-ouvertes.fr/hal-01169243

R. V. Lenth, LSMEANS: Least-Squares Means (Version 2.23). https, 2016.

C. Li-marchetti, L. Bras, C. Relion, D. Citerne, S. Huché-thélier et al., Genotypic differences in architectural and physiological responses to water restriction in rose bush, Frontiers in Plant Science, vol.123, issue.163, 2015.
DOI : 10.1016/j.scienta.2009.07.022

URL : https://hal.archives-ouvertes.fr/hal-01204192

M. C. Meilgaard, B. T. Carr, C. , and G. V. , Sensory evaluation techniques, 2006.

P. Morel, G. Galopin, and N. Donès, Using architectural analysis to compare the shape of two hybrid tea rose genotypes, Scientia Horticulturae, vol.120, issue.3, pp.391-398, 2009.
DOI : 10.1016/j.scienta.2008.11.039

URL : https://hal.archives-ouvertes.fr/hal-00730104

P. Morel, L. Crespel, G. Galopin, and B. Moulia, Effect of mechanical stimulation on the growth and branching of garden rose, Sci. Hortic, vol.135, pp.59-64, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00841809

A. T. Murray and T. Shyy, Integrating attribute and space characteristics in choropleth display and spatial data mining, International Journal of Geographical Information Science, vol.13, issue.7, pp.649-667, 2000.
DOI : 10.1007/978-3-662-03499-6_5

T. Naes, P. Brockhoff, and O. Tomic, Statistics for Sensory and Consumer Science, 2011.

S. Nakagawa and H. Schielzeth, from generalized linear mixed-effects models, Methods in Ecology and Evolution, vol.22, issue.2, pp.133-142, 2013.
DOI : 10.1002/sim.1572

B. Pallas, D. Silva, D. Valsesia, P. Yang, W. Guillaume et al., Simulation of carbon allocation and organ growth variability in apple tree by connecting architectural and source???sink models, Annals of Botany, vol.125, issue.2, pp.317-330, 2016.
DOI : 10.1007/BF00240982

URL : https://hal.archives-ouvertes.fr/hal-01379652

B. Pateiro-lópez and A. Casal, Generalizing the convex hull of a sample: the R package alphahull, J. Statist. Softw, vol.34, pp.1-28, 2010.

R. W. Pearcy, H. Muraoka, F. C. Valladares, S. Dufour-kowalski, F. Boudon et al., Crown architecture in sun and shade environments: assessing function and trade-offs with a three-dimensional simulation model, New Phytologist, vol.24, issue.3, pp.791-800, 2005.
DOI : 10.1007/s00442-003-1227-2

URL : http://onlinelibrary.wiley.com/doi/10.1111/j.1469-8137.2005.01328.x/pdf

R. Development and C. Team, R: A language and environment for statistical computing (Version 3.2.3). (Vienna, Austria: R Foundation for Statistical Computing), 2015.

P. Raimbault and M. Tanguy, La gestion des arbres d'ornement. 1 re partie : une méthode d'analyse et de diagnostic de la partie aérienne. Revue Forestière Française XLV, pp.97-117, 1993.

B. A. Rainey, IMPORTANCE OF REFERENCE STANDARDS IN TRAINING PANELISTS, Journal of Sensory Studies, vol.31, issue.2, pp.149-154, 1986.
DOI : 10.1111/j.1745-4603.1973.tb00665.x

F. Rossi, Assessing sensory panelist performance using repeatability and reproducibility measures. Food Qual. and Pref, pp.467-479, 2001.
DOI : 10.1016/s0950-3293(01)00038-6

P. Santagostini, S. Demotes-mainard, L. Huché-thélier, N. Leduc, J. Bertheloot et al., Assessment of the visual quality of ornamental plants: Comparison of three methodologies in the case of the rosebush, Scientia Horticulturae, vol.168, pp.17-26, 2014.
DOI : 10.1016/j.scienta.2014.01.011

URL : https://hal.archives-ouvertes.fr/hal-01456015

M. Schreiner, M. Korn, M. Stenger, L. Holzgreve, and M. Altmann, Current understanding and use of quality characteristics of horticulture products, Scientia Horticulturae, vol.163, pp.63-69, 2013.
DOI : 10.1016/j.scienta.2013.09.027

, | I s s u e 3 |

. Garbez, Ornamental plants architectural characteristics in relation to visual sensory attributes
URL : https://hal.archives-ouvertes.fr/hal-01831318

D. Scuderi, F. Giuffrida, S. Toscano, and D. Romano, Growth, physiological response, and quality characteristics of weeping fig in response to shading levels and climatic conditions, HortScience, vol.47, pp.1586-1592, 2012.

V. Segura, A. Ouangraoua, P. Ferraro, C. , and E. , , 2008.

, Comparison of tree architecture using tree edit distances: application to 2-year-old apple hybrids, Euphytica, vol.161, pp.155-164

L. Silva, M. L. Koga, C. E. Cugnasca, C. , and A. H. , , 2013.

, Comparative assessment of feature selection and classification techniques for visual inspection of pot plant seedlings, Comp. and Electron. in Agricult, vol.97, pp.47-55

J. Spilke, H. Piepho, and X. Hu, A simulation study on tests of hypotheses and confidence intervals for fixed effects in mixed models for blocked experiments with missing data, Journal of Agricultural, Biological, and Environmental Statistics, vol.4, issue.3, 2005.
DOI : 10.1002/9781118164860

. Agricult and E. Biol, Statistics, vol.10, issue.3, pp.374-389

D. Steinley, K-means clustering: A half-century synthesis, British Journal of Mathematical and Statistical Psychology, vol.8, issue.1, 2006.
DOI : 10.1099/00221287-17-1-201

, British J. Math. and Statist. Psychol, vol.59, pp.1-34

F. J. Sterck, R. A. Duursma, R. W. Pearcy, F. Valladares, M. Cieslak et al., Plasticity influencing the light compensation point offsets the specialization for light niches across shrub species in a tropical forest understorey, Journal of Ecology, vol.72, issue.4, pp.971-980, 2013.
DOI : 10.2307/1940964

H. Stone, J. Sidel, and R. C. Singleton, Sensory Evaluation by Quantitative Descriptive Analysis, Food Technol, vol.28, pp.24-34, 1974.
DOI : 10.1002/9780470385036.ch1c

W. Townsley-brascamp and N. E. Marr, EVALUATION AND ANALYSIS OF CONSUMER PREFERENCES FOR OUTDOOR ORNAMENTAL PLANTS, Acta Horticulturae, issue.391, 1994.
DOI : 10.17660/ActaHortic.1995.391.19

, Acta Hortic, vol.391, pp.199-208

F. Valladares, S. J. Wright, E. Lasso, K. Kitajima, and R. W. Pearcy, PLASTIC PHENOTYPIC RESPONSE TO LIGHT OF 16 CONGENERIC SHRUBS FROM A PANAMANIAN RAINFOREST, Ecology, vol.81, issue.7, pp.1925-19360012, 1925.
DOI : 10.2307/2960558

M. Walesiak and A. Dudek, clusterSim: Searching for Optimal Clustering Procedure for a Data Set (Version 0.44-2). https, 2015.

C. J. Wolters, A. , and E. M. , Effect of training procedure on the performance of descriptive panels, Food Quality and Preference, vol.5, issue.3, pp.203-2140950, 1994.
DOI : 10.1016/0950-3293(94)90036-1

I. K. Yeo, J. , and R. A. , A new family of power transformations to improve normality or symmetry, Biometrika, vol.87, issue.4, pp.954-959, 2000.
DOI : 10.1093/biomet/87.4.954

N. Zieslin and Y. Mor, Plant management of greenhouse roses. Formation of renewal canes, Scientia Horticulturae, vol.15, issue.1, pp.67-750304, 1981.
DOI : 10.1016/0304-4238(81)90063-7

N. Zieslin and Y. Mor, Light on roses. A review, Scientia Horticulturae, vol.43, issue.1-2, pp.1-140304, 1990.
DOI : 10.1016/0304-4238(90)90031-9

W. Zucchini, An Introduction to Model Selection, Journal of Mathematical Psychology, vol.44, issue.1, 2000.
DOI : 10.1006/jmps.1999.1276

. Psychol, , pp.41-61, 2017.

, Accepted: Feb, vol.20, 2018.

, Addresses of authors: M. Garbez 1

I. , I. , and A. Ouest, Université d' Angers, SFR 4207 QUASAV, 42 rue Georges Morel, CS, vol.60057, issue.2

P. Desmartis,

G. Unité-de-recherche,

, Recherche en Ingénierie des Systèmes (LARIS) EA 731, 62 avenue Notre Dame du

A. , C. , C. Inra, and U. Ird,

C. Virtual-plants,

M. Laboratoire-jean-kuntzmann, Rhône-Alpes, 655 avenue de l'Europe, p.38334

, Saint Ismier Cedex, issue.9

, author; E-mail: gilles.galopin@agrocampus-ouest, Image pour la Santé (CREATIS), CNRS ? UMRfr Postal address: Agrocampus Ouest, 2 rue Le Nôtre, pp.1044-49045

, Angers Cedex, vol.01