A. Compston and A. Coles, Multiple sclerosis, Lancet, vol.359, pp.1221-1231, 2002.
URL : https://hal.archives-ouvertes.fr/hal-00996686

J. Antel, S. Antel, Z. Caramanos, D. L. Arnold, and T. Kuhlmann, Primary progressive multiple sclerosis: Part of the MS disease spectrum or separate disease entity?, Acta. Neuropathol, vol.123, pp.627-638, 2012.

, Int. J. Mol. Sci, vol.18, p.2097, 2017.

O. Ciccarelli, F. Barkhof, B. Bodini, N. De-stefano, X. Golay et al., Pathogenesis of multiple sclerosis: Insights from molecular and metabolic imaging, Lancet Neurol, vol.13, pp.807-822, 2014.

C. Larochelle, T. Uphaus, A. Prat, and F. Zipp, Secondary progression in multiple sclerosis: Neuronal exhaustion or distinct pathology?, Trends Neurosci, vol.39, pp.325-339, 2016.

H. Lassmann, J. Van-horssen, and D. Mahad, Progressive multiple sclerosis: Pathology and pathogenesis, Nat. Rev. Neurol, vol.8, pp.647-656, 2012.

H. Kearney, D. H. Miller, and O. Ciccarelli, Spinal cord MRI in multiple sclerosis-Diagnostic, prognostic and clinical value, Nat. Rev. Neurol, vol.11, pp.327-338, 2015.

H. Kearney, D. R. Altmann, R. S. Samson, M. C. Yiannakas, C. A. Wheeler-kingshott et al., Cervical cord lesion load is associated with disability independently from atrophy in MS, Neurology, vol.84, pp.367-373, 2015.

A. Lieury, M. Chanal, G. Androdias, R. Reynolds, S. Cavagna et al., Tissue remodeling in periplaque regions of multiple sclerosis spinal cord lesions, Glia, vol.62, pp.1645-1658, 2014.

T. Zeis, U. Graumann, R. Reynolds, and N. Schaeren-wiemers, Normal-appearing white matter in multiple sclerosis is in a subtle balance between inflammation and neuroprotection, Brain, vol.131, pp.288-303, 2007.

J. Melief, S. J. De-wit, C. G. Van-eden, C. Teunissen, J. Hamann et al., Huitinga, I. HPA axis activity in multiple sclerosis correlates with disease severity, lesion type and gene expression in normal-appearing white matter, Acta Neuropathol, vol.126, pp.237-249, 2013.

C. Sinclair, M. Mirakhur, J. Kirk, M. Farrell, and S. Mcquaid, Up-regulation of osteopontin and alphaBeta-crystallin in the normal-appearing white matter of multiple sclerosis: An immunohistochemical study utilizing tissue microarrays, Neuropathol. Appl. Neurobiol, vol.31, pp.292-303, 2005.

A. Seewann, H. Vrenken, P. Van-der-valk, E. L. Blezer, D. L. Knol et al., Diffusely abnormal white matter in chronic multiple sclerosis: Imaging and histopathologic analysis, Arch. Neurol, vol.66, pp.601-609, 2009.

J. Mellergård, A. Tisell, O. Dahlqvist-leinhard, I. Blystad, A. Landtblom et al., Association between change in normal appearing white matter metabolites and intrathecal inflammation in natalizumab-treated multiple sclerosis, PLoS ONE, vol.7, 2012.

J. L. Trotter, C. L. Wegescheide, W. F. Garvey, and W. W. Tourtellotte, Studies of myelin proteins in multiple sclerosis brain tissue, Neurochem. Res, vol.9, pp.147-152, 1984.

D. Johnson, S. Sato, R. H. Quarles, T. Inuzuka, R. O. Brady et al., Quantitation of the myelin-associated glycoprotein in human nervous tissue from controls and multiple sclerosis patients, J. Neurochem, vol.46, pp.1086-1093, 1986.

D. Wheeler, V. V. Bandaru, P. A. Calabresi, A. Nath, and N. J. Haughey, A defect of sphingolipid metabolism modifies the properties of normal appearing white matter in multiple sclerosis, Brain, vol.131, pp.3092-3102, 2008.

J. L. Huynh, P. Garg, T. H. Thin, S. Yoo, R. Dutta et al., Epigenome-wide differences in pathology-free regions of multiple sclerosis-affected brains, Nat. Neurosci, vol.17, pp.121-130, 2014.

K. Markoullis, I. Sargiannidou, N. Schiza, A. Hadjisavvas, F. Roncaroli et al., Gap junction pathology in multiple sclerosis lesions and normal-appearing white matter, Acta Neuropathol, vol.123, pp.873-886, 2012.

A. Echaniz-laguna, B. Degos, C. Bonnet, P. Latour, T. Hamadouche et al., NDRG1-linked Charcot-Marie-Tooth disease (CMT4D) with central nervous system involvement, Neuromuscul. Disord, vol.17, pp.163-168, 2007.

V. Pietiainen, B. Vassilev, T. Blom, W. Wang, J. Nelson et al., Ikonen, E. NDRG1 functions in LDL receptor trafficking by regulating endosomal recycling and degradation, J. Cell Sci, vol.126, pp.3961-3971, 2013.

, Int. J. Mol. Sci, 2017.

J. Luo, A. H. Lin, E. Masliah, and T. Wyss-coray, Bioluminescence imaging of Smad signaling in living mice shows correlation with excitotoxic neurodegeneration, Proc. Natl. Acad. Sci, vol.103, pp.18326-18331, 2006.

C. Schachtrup, J. K. Ryu, M. J. Helmrick, E. Vagena, D. K. Galanakis et al., Fibrinogen triggers astrocyte scar formation by promoting the availability of active TGFafter vascular damage, J. Neurosci, vol.30, pp.5843-5854, 2010.

W. A. Gomes, M. F. Mehler, and J. A. Kessler, Transgenic overexpression of BMP4 increases astroglial and decreases oligodendroglial lineage commitment, Dev. Biol, vol.255, pp.164-177, 2003.

M. L. Fuller, A. K. Dechant, B. Rothstein, A. Caprariello, R. Wang et al., Bone morphogenetic proteins promote gliosis in demyelinating spinal cord lesions, Ann. Neurol, vol.62, pp.288-300, 2007.

I. B. Wanner, M. A. Anderson, B. Song, J. Levine, A. Fernandez et al., Glial scar borders are formed by newly proliferated, elongated astrocytes that interact to corral inflammatory and fibrotic cells via STAT3-dependent mechanisms after spinal cord injury, J. Neurosci, vol.33, pp.12870-12886, 2013.

S. Robel, B. Berninger, and M. Götz, The stem cell potential of glia: Lessons from reactive gliosis, Nat. Rev. Neurosci, vol.12, pp.88-104, 2011.

M. Brun, J. E. Coles, E. A. Monckton, D. D. Glubrecht, D. Bisgrove et al., Nuclear factor I regulates brain fatty acid-binding protein and glial fibrillary acidic protein gene expression in malignant glioma cell lines, J. Mol. Biol, vol.391, pp.282-300, 2009.

R. Hussain, A. M. Ghoumari, B. Bielecki, J. Steibel, N. Boehm et al., The neural androgen receptor: A therapeutic target for myelin repair in chronic demyelination, Brain, vol.136, pp.132-146, 2013.
URL : https://hal.archives-ouvertes.fr/hal-01542826

E. Acaz-fonseca, M. Avila-rodriguez, L. M. Garcia-segura, and G. E. Barreto, Regulation of astroglia by gonadal steroid hormones under physiological and pathological conditions, Prog. Neurobiol, vol.144, pp.5-26, 2016.

S. Coers, L. Tanzer, and K. J. Jones, Testosterone treatment attenuates the effects of facial nerve transection on glial fibrillary acidic protein (GFAP) levels in the hamster facial motor nucleus. Metab. Brain Dis, vol.17, pp.55-63, 2002.

G. Barreto, S. Veiga, I. Azcoitia, L. M. Garcia-segura, and D. Garcia-ovejero, Testosterone decreases reactive astroglia and reactive microglia after brain injury in male rats: Role of its metabolites, oestradiol and dihydrotestosterone, Eur. J. Neurosci, vol.25, pp.3039-3046, 2007.

M. A. Arevalo, M. Santos-galindo, E. Acaz-fonseca, I. Azcoitia, and L. M. Garcia-segura, Gonadal hormones and the control of reactive gliosis, Horm. Behav, vol.63, pp.216-221, 2013.

S. Giatti, R. Rigolio, S. Romano, N. Mitro, B. Viviani et al., Dihydrotestosterone as a protective agent in chronic experimental autoimmune encephalomyelitis, Neuroendocrinology, vol.101, pp.296-308, 2015.

A. Lachmann, H. Xu, J. Krishnan, S. I. Berger, A. R. Mazloom et al., Transcription factor regulation inferred from integrating genome-wide ChIP-X experiments, Bioinformatics, vol.26, pp.2438-2444, 2010.

A. Fabregat, K. Sidiropoulos, P. Garapati, M. Gillespie, K. Hausmann et al., The reactome pathway knowledgebase, Nucleic Acids Res, vol.44, pp.481-487, 2016.

N. Koning, D. F. Swaab, R. M. Hoek, and I. Huitinga, Distribution of the immune inhibitory molecules CD200 and CD200R in the normal central nervous system and multiple sclerosis lesions suggests neuron-glia and glia-glia interactions, J. Neuropathol. Exp. Neurol, vol.68, pp.159-167, 2009.

S. Gabel, E. Koncina, G. Dorban, T. Heurtaux, C. Birck et al., Inflammation promotes a conversion of astrocytes into neural progenitor cells via NF-?B activation, Mol. Neurobiol, vol.53, pp.5041-5055, 2016.

N. J. Allen, M. L. Bennett, L. C. Foo, G. X. Wang, C. Chakraborty et al., Astrocyte glypicans 4 and 6 promote formation of excitatory synapses via GluA1 AMPA receptors, Nature, vol.486, pp.410-414, 2012.

, Int. J. Mol. Sci, vol.18, 2017.

J. R. Higginson, S. M. Thompson, A. Santos-silva, S. E. Guimond, J. E. Turnbull et al., Differential sulfation remodelling of heparan sulfate by extracellular 6-O-sulfatases regulates fibroblast growth factor-induced boundary formation by glial cells: Implications for glial cell transplantation, J. Neurosci, vol.32, pp.15902-15912, 2012.

S. Lively, I. Moxon-emre, and L. C. Schlichter, SC1/hevin and reactive gliosis after transient ischemic stroke in young and aged rats, J. Neuropathol. Exp. Neurol, vol.70, pp.913-929, 2011.

V. Agarwal, G. W. Bell, J. Nam, and D. P. Bartel, Predicting effective microRNA target sites in mammalian mRNAs, vol.4, 2015.

R. M. Gould, C. M. Freund, and E. Barbarese, Myelin-associated oligodendrocytic basic protein mRNAs reside at different subcellular locations, J. Neurochem, vol.73, pp.1913-1924, 1999.

J. Torvund-jensen, J. Steengaard, L. Reimer, L. B. Fihl, and L. S. Laursen, Transport and translation of MBP mRNA is regulated differently by distinct hnRNP proteins, J. Cell Sci, vol.127, pp.1550-1564, 2014.

C. Müller, N. M. Bauer, I. Schäfer, and R. White, Making myelin basic protein-from mRNA transport to localized translation, Front. Cell. Neurosci, 2013.

V. Seiberlich, N. G. Bauer, L. Schwarz, C. Ffrench-constant, O. Goldbaum et al., Downregulation of the microtubule associated protein Tau impairs process outgrowth and myelin basic protein mRNA transport in oligodendrocytes, Glia, vol.63, pp.1621-1635, 2015.

D. R. Colman, G. Kreibich, A. B. Frey, and D. D. Sabatini, Synthesis and incorporation of myelin polypeptides into CNS myelin, J. Cell Biol, vol.95, pp.598-608, 1982.

R. M. Gould, C. M. Freund, F. Palmer, and D. L. Feinstein, Messenger RNAs located in myelin sheath assembly sites, J. Neurochem, vol.75, pp.1834-1844, 2000.

O. Basha, R. Barshir, M. Sharon, E. Lerman, B. F. Kirson et al., Yeger-Lotem, E. The TissueNet v.2 database: A quantitative view of protein-protein interactions across human tissues, Nucleic Acids Res, vol.45, pp.427-431, 2017.

Y. Zhang, S. A. Sloan, L. E. Clarke, C. Caneda, C. A. Plaza et al., Purification and characterization of progenitor and mature human astrocytes reveals transcriptional and functional differences with mouse, Neuron, vol.89, pp.37-53, 2016.

Y. Zhang, K. Chen, S. A. Sloan, M. L. Bennett, A. R. Scholze et al., An RNA-sequencing transcriptome and splicing database of glia, neurons, and vascular cells of the cerebral cortex, J. Neurosci, vol.34, pp.11929-11947, 2014.

Y. Zhang, S. Sloan, and B. A. Barres, Purification of functional human astrocytes, vol.404, 2016.

J. Li and L. Kretzner, The growth-inhibitory NDRG1 gene is a Myc negative target in human neuroblastomas and other cell types with overexpressed N-or C-myc, Mol. Cell. Biochem, vol.250, pp.91-105, 2003.

A. Shimono, T. Okuda, and H. Kondoh, N-myc-dependent repression of ndr1, a gene identified by direct subtraction of whole mouse embryo cDNAs between wild type and N-myc mutant, Mech. Dev, vol.83, pp.39-52, 1999.

S. Gherardi, E. Valli, D. Erriquez, and G. Perini, MYCN-mediated transcriptional repression in neuroblastoma: The other side of the coin, Front. Oncol, vol.3, 2013.

J. Zhang, S. Chen, W. Zhang, J. Zhang, X. Liu et al., Human differentiation-related gene NDRG1 is a Myc downstream-regulated gene that is repressed by Myc on the core promoter region, Gene, vol.417, pp.5-12, 2008.

T. P. Ellen, Q. Ke, P. Zhang, and M. Costa, NDRG1, a growth and cancer related gene: Regulation of gene expression and function in normal and disease states, Carcinogenesis, vol.29, pp.2-8, 2008.

S. Ambrosio, S. Amente, C. D. Saccà, M. Capasso, R. A. Calogero et al., LSD1 mediates MYCN control of epithelial-mesenchymal transition through silencing of metastatic suppressor NDRG1 gene, Oncotarget, vol.8, pp.3854-3869, 2017.

G. R. John, S. L. Shankar, B. Shafit-zagardo, A. Massimi, S. C. Lee et al., Multiple sclerosis: Re-expression of a developmental pathway that restricts oligodendrocyte maturation, Nat. Med, vol.8, pp.1115-1121, 2002.

, Int. J. Mol. Sci, vol.18, 2017.

I. H. Zwain and S. S. Yen, Neurosteroidogenesis in astrocytes, oligodendrocytes, and neurons of cerebral cortex of rat brain, Endocrinology, vol.140, pp.3843-3852, 1999.

B. Allolio and W. Arlt, DHEA treatment: Myth or reality?, Trends Endocrinol. Metab, vol.13, pp.288-294, 2002.

V. Luu-the and F. Labrie, The Intracrine Sex Steroid Biosynthesis Pathways, Progress in Brain Research, vol.181, pp.177-192, 2010.

D. R. Bauman, S. Steckelbroeck, and T. M. Penning, The roles of aldo-keto reductases in steroid hormone action, Drug News Perspect, vol.17, pp.563-578, 2004.

H. Kang, K. Huang, S. Y. Chang, W. Ma, W. Lin et al., Differential modulation of androgen receptor-mediated transactivation by Smad3 and tumor suppressor Smad4, J. Biol. Chem, vol.277, pp.43749-43756, 2002.

J. E. Chipuk, S. C. Cornelius, N. J. Pultz, J. S. Jorgensen, M. J. Bonham et al., The androgen receptor represses transforming growth factor-signaling through interaction with Smad3, J. Biol. Chem, vol.277, pp.1240-1248, 2002.

S. A. Hayes, M. Zarnegar, M. Sharma, F. Yang, D. M. Peehl et al., SMAD3 represses androgen receptor-mediated transcription, Cancer Res, vol.61, pp.2112-2118, 2001.

H. Wang, K. Song, T. L. Sponseller, and D. Danielpour, Novel function of androgen receptor-associated protein 55/Hic-5 as a negative regulator of Smad3 signaling, J. Biol. Chem, vol.280, pp.5154-5162, 2005.

H. G. Van-der-poel, Androgen receptor and TGFbeta1/Smad signaling are mutually inhibitory in prostate cancer, Eur. Urol, vol.48, pp.1051-1058, 2005.

K. Song, H. Wang, T. L. Krebs, B. Wang, T. J. Kelley et al., DHT selectively reverses Smad3-mediated/TGF-?-induced responses through transcriptional down-regulation of Smad3 in prostate epithelial cells, Mol. Endocrinol, vol.24, pp.2019-2029, 2010.

R. Saddawi-konefka, R. Seelige, E. T. Gross, E. Levy, S. C. Searles et al., Nrf2 Induces IL-17D to mediate tumor and virus surveillance, Cell Rep, vol.16, pp.2348-2358, 2016.

R. Seelige, A. Washington, and J. D. Bui, The ancient cytokine IL-17D is regulated by Nrf2 and mediates tumor and virus surveillance, Cytokine, vol.91, pp.10-12, 2017.

H. E. Broxmeyer, T. Starnes, H. Ramsey, S. Cooper, R. Dahl et al., Hromas, R. The IL-17 cytokine family members are inhibitors of human hematopoietic progenitor proliferation, Blood, vol.108, 2006.

T. Starnes, H. E. Broxmeyer, M. J. Robertson, and R. Hromas, Cutting edge: IL-17D, a novel member of the IL-17 family, stimulates cytokine production and inhibits hemopoiesis, J. Immunol, vol.169, pp.642-646, 2002.

D. Allan, K. J. Fairlie-clarke, C. Elliott, C. Schuh, S. C. Barnett et al., Role of IL-33 and ST2 signalling pathway in multiple sclerosis: Expression by oligodendrocytes and inhibition of myelination in central nervous system, Acta Neuropathol. Commun, 2016.

C. Natarajan, S. Yao, and S. Sriram, TLR3 agonist poly-IC induces IL-33 and promotes myelin repair, PLoS ONE, vol.11, 2016.

S. P. Gadani, I. Smirnov, A. T. Smith, C. C. Overall, and J. Kipnis, Characterization of meningeal type 2 innate lymphocytes and their response to CNS injury, J. Exp. Med, vol.214, 2016.

A. B. Molofsky, A. K. Savage, and R. M. Locksley, Interleukin-33 in tissue homeostasis, injury, and inflammation, Immunity, vol.42, pp.1005-1019, 2015.

B. Griesenauer and S. Paczesny, The ST2/IL-33 axis in immune cells during inflammatory diseases, Front. Immunol, vol.8, p.475, 2017.

R. A. Gjaltema, S. De-rond, M. G. Rots, and R. A. Bank, Procollagen lysyl hydroxylase 2 expression is regulated by an alternative downstream transforming growth factor ?-1 activation mechanism, J. Biol. Chem, vol.290, pp.28465-28476, 2015.

D. F. Remst, A. B. Blom, E. L. Vitters, R. A. Bank, . Van-den et al., Gene expression analysis of murine and human osteoarthritis synovium reveals elevation of transforming growth factor ?-responsive genes in osteoarthritis-related fibrosis, Arthritis Rheumatol, vol.66, pp.647-656, 2014.

, Int. J. Mol. Sci, vol.18, 2017.

D. F. Remst, E. N. Blaney-davidson, E. L. Vitters, R. A. Bank, . Van-den et al., TGF-? induces Lysyl hydroxylase 2b in human synovial osteoarthritic fibroblasts through ALK5 signaling, Cell Tissue Res, vol.355, pp.163-171, 2014.

A. J. Van-der-slot, A. Zuurmond, A. F. Bardoel, C. Wijmenga, H. E. Pruijs et al., Identification of PLOD2 as telopeptide Lysyl hydroxylase, an important enzyme in fibrosis, J. Biol. Chem, vol.278, pp.40967-40972, 2003.

J. Wu, D. P. Reinhardt, C. Batmunkh, W. Lindenmaier, R. K. Far et al., Functional diversity of lysyl hydroxylase 2 in collagen synthesis of human dermal fibroblasts, Exp. Cell Res, vol.312, pp.3485-3494, 2006.

Y. Chen, M. Terajima, Y. Yang, L. Sun, Y. Ahn et al., Lysyl hydroxylase 2 induces a collagen cross-link switch in tumor stroma, J. Clin. Investig, vol.125, pp.1147-1162, 2015.

G. Trinchieri, Interleukin-12 and the regulation of innate resistance and adaptive immunity, Nat. Rev. Immunol, vol.3, pp.133-146, 2003.

J. S. Campbell, S. D. Hughes, D. G. Gilbertson, T. E. Palmer, M. S. Holdren et al., Platelet-derived growth factor C induces liver fibrosis, steatosis, and hepatocellular carcinoma, Proc. Natl. Acad. Sci, vol.102, pp.3389-3394, 2005.

I. V. Martin, E. Borkham-kamphorst, S. Zok, C. R. Van-roeyen, U. Eriksson et al., Platelet-derived growth factor (PDGF)-C neutralization reveals differential roles of PDGF receptors in liver and kidney fibrosis, Am. J. Pathol, vol.182, pp.107-117, 2013.

C. Lee, F. Zhang, Z. Tang, Y. Liu, X. Li et al., A new performer in the neurovascular interplay, vol.19, pp.474-486, 2013.

F. Sedel, D. Bernard, D. M. Mock, and A. Tourbah, Targeting demyelination and virtual hypoxia with high-dose biotin as a treatment for progressive multiple sclerosis, Neuropharmacology, vol.110, pp.644-653, 2016.

F. Sedel, C. Papeix, A. Bellanger, V. Touitou, C. Lebrun-frenay et al., High doses of biotin in chronic progressive multiple sclerosis: A pilot study, Mult. Scler. Relat. Disord, vol.4, pp.159-169, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01251510

A. De-gramont, S. Faivre, and E. Raymond, Novel TGF-? inhibitors ready for prime time in onco-immunology, vol.6, 2017.

D. Hollander, M. W. Bensch, F. Glaudemans, A. W. Oude-munnink, T. H. Enting et al., TGFantibody uptake in recurrent high-grade glioma imaged with 89Zr-fresolimumab PET, J. Nucl. Med, vol.56, pp.1310-1314, 2015.

L. M. Rice, C. M. Padilla, S. R. Mclaughlin, A. Mathes, J. Ziemek et al., Fresolimumab treatment decreases biomarkers and improves clinical symptoms in systemic sclerosis patients, J. Clin. Investig, vol.125, pp.2795-2807, 2015.

T. Wyss-coray, P. Borrow, M. J. Brooker, and L. Mucke, Astroglial overproduction of TGF-beta 1 enhances inflammatory central nervous system disease in transgenic mice, J. Neuroimmunol, vol.77, pp.45-50, 1997.

J. Luo, P. P. Ho, M. S. Buckwalter, T. Hsu, L. Y. Lee et al., Glia-dependent TGF-? signaling, acting independently of the TH17 pathway, is critical for initiation of murine autoimmune encephalomyelitis, J. Clin. Investig, vol.117, pp.3306-3315, 2007.

W. Huber, V. J. Carey, R. Gentleman, S. Anders, M. Carlson et al., Orchestrating high-throughput genomic analysis with Bioconductor, Nat. Methods, vol.12, pp.115-121, 2015.

D. Warde-farley, S. L. Donaldson, O. Comes, K. Zuberi, R. Badrawi et al., The GeneMANIA prediction server: Biological network integration for gene prioritization and predicting gene function, Nucleic Acids Res, vol.38, 2010.

J. Montojo, K. Zuberi, H. Rodriguez, F. Kazi, G. Wright et al., GeneMANIA Cytoscape plugin: Fast gene function predictions on the desktop, Bioinformatics, vol.26, pp.2927-2928, 2010.

H. Zhang, T. Liu, C. Liu, S. Song, X. Zhang et al., AnimalTFDB 2.0: A resource for expression, prediction and functional study of animal transcription factors, Nucleic Acids Res, vol.43, pp.76-81, 2015.

M. V. Kuleshov, M. R. Jones, A. D. Rouillard, N. F. Fernandez, Q. Duan et al., Enrichr: A comprehensive gene set enrichment analysis web server 2016 update, Nucleic Acids Res, vol.44, pp.90-97, 2016.

D. Szklarczyk, A. Franceschini, S. Wyder, K. Forslund, D. Heller et al., Protein-protein interaction networks, integrated over the tree of life, Nucleic Acids Res, vol.10, pp.447-452, 2015.

N. Orii, M. K. Ganapathiraju, and . Wiki-pi, A web-server of annotated human protein-protein interactions to aid in discovery of protein function, PLoS ONE, vol.7, p.49029, 2012.

A. Chatr-aryamontri, R. Oughtred, L. Boucher, J. Rust, C. Chang et al., The BioGRID interaction database: 2017 update, Nucleic Acids Res, vol.45, pp.369-379, 2017.

K. Prasad, T. S. Goel, R. Kandasamy, K. Keerthikumar, S. Kumar et al., Human protein reference database-2009 supdate, Nucleic Acids Res, vol.37, pp.767-772, 2009.