, Analysis of the evolutionary history of the xaxAB locus by a comparison of topology between an Enterobacteriaceae tree and a xaxA gene tree

, Vibrio cholerae sequences were used as the outgroup. Nodes are supported by bootstrap values of more than 93%, unless marked with an asterisk. (B) Phylogenetic tree based on ML analysis of the xaxA gene. Nodes are supported by bootstrap values of more than 86%, unless marked with an asterisk. Node A, the bacterial ancestor of the Providencia-Proteus-Photorhabdus-Xenorhabdus clade, which probably contained the xaxA gene. Node B, bacterial ancestor of the Yersinia kristensenii and Y. enterocolitica species, to which the xaxA gene was probably transferred horizontally. Crosses, probable deletions of the xaxA gene, Enterobacteriaceae phylogenetic tree based on a maximum-likelihood (ML) analysis of 12 core concatenated protein-coding sequences, p.55119

, Prov. rustigianii DSM, vol.4541, p.55071

, Prov. alcalifaciens, vol.30120, p.55119

X. , , pp.10000001-010000496

X. Ss-, NC_013892; X. szentirmaii DSM16638, pp.10000001-010000164, 2004.

, ATCC19061: NC_014228.1; X. poinarii G6, p.704551

X. , , p.704550

Y. , , p.54349

Y. , , p.35243

Y. , , p.54345

Y. Prjna54343;-y, , p.55247

Y. , , p.54347

Y. , , p.55245

Y. Enterocolitica, 8081: NC_008800; Serratia proteamaculans 568: NC_0098332; Se. odorifera DSM4582: PRJNA40087; Dickeya zeae 1591: NC_012912; Dickeya dadantii 586: NC_013592

P. , , p.13421

. Pe, SCRI1043: NC_004547; Edwarsiella tarda EIB202: NC_013508

, Edwarsiella ictulari 93-146: NC_012779.2; Pantoea ananatis LMG20103: NC_013956

E. ,

. Er, ATCC49946: NC_013971; Klebsiella variicola At-22: NC_013850

K. , 342: NC_011283; Salmonella enterica Typhimurium LT2: NC_003197

. Sal, for providing computing resources. The paper benefited from the comments of John McCutcheon, and three anonymous reviewers. This study was supported by INRA (grant SPE 2010-1133-01, Typhi CT18: AL513382; Escherichia albertii TW07627: PRJNA55089; Es. fergusonii ATCC35469T: NC_011740; Es. coli K12: NC_000913). informatics platform, 2011.

, Antibiotic-activity of Xenorhabdus spp, bacteria symbiotically associated with insect pathogenic nematodes of the families Heterorhabditidae and Steinernematidae, Literature Cited Akhurst RJ, vol.128, pp.3061-3065, 1982.

R. J. Akhurst, Taxonomic study of Xenorhabdus, a genus of bacteria symbiotically associated with insect pathogenic nematodes, Int J Syst Bacteriol, vol.33, pp.38-45, 1983.

R. J. Akhurst, Xenorhabdus nematophilus subsp poinarii-its interaction with insect pathogenic nematodes, Syst Appl Microbiol, vol.8, pp.142-147, 1986.

R. J. Akhurst and N. E. Boemare, A numerical taxonomic study of the genus Xenorhabdus (Enterobacteriaceae) and proposed elevation of the subspecies of Xenorhabdus-Nematophilus to species, J Gen Microbiol, vol.134, pp.1835-1845, 1988.

M. A. Ansari, L. Tirry, and M. Moens, Entomopathogenic nematodes and their symbiotic bacteria for the biological control of Hoplia philanthus (Coleoptera : Scarabaeidae), Biol Control, vol.28, pp.111-117, 2003.

J. M. Aury, High quality draft sequences for prokaryotic genomes using a mix of new sequencing technologies, BMC Genomics, vol.9, p.603, 2008.
URL : https://hal.archives-ouvertes.fr/hal-02659381

B. O. Bachmann and J. Ravel, Methods for in silico prediction of microbial polyketide and non ribosomal peptide biosynthetic pathways from DNA sequence data, Methods Enzymol. Chapter, vol.8, pp.181-217, 2009.

H. B. Bode, Entomopathogenic bacteria as a source of secondary metabolites, Curr Opin Chem Biol, vol.13, pp.224-230, 2009.

D. Bowen, Insecticidal toxins from the bacterium Photorhabdus luminescens, Science, vol.280, pp.2129-2132, 1998.

S. E. Brown, Txp40, a ubiquitous insecticidal toxin protein from Xenorhabdus and Photorhabdus bacteria, Appl Environ Microbiol, vol.72, pp.1653-1662, 2006.

J. Castresana, Selection of conserved blocks from multiple alignments for their use in phylogenetic analysis, Mol Biol Evol, vol.17, pp.540-552, 2000.

J. Chaston and H. Goodrich-blair, Common trends in mutualism revealed by model associations between invertebrates and bacteria, FEMS Microbiol Rev, vol.34, pp.41-58, 2010.

J. M. Chaston, K. E. Murfin, E. A. Heath-heckman, and H. Goodrich-blair, Previously unrecognized stages of species-specific colonization in the mutualism between Xenorhabdus bacteria and Steinernema nematodes, Cell Microbiol, vol.15, pp.1545-1559, 2013.

J. M. Chaston, The entomopathogenic bacterial endosymbionts Xenorhabdus and Photorhabdus: convergent lifestyles from divergent genomes, PLoS One, vol.6, p.27909, 2011.
URL : https://hal.archives-ouvertes.fr/hal-02647677

V. Converse and P. S. Grewal, Virulence of entomopathogenic nematodes to the western masked chafer Cyclocephala hirta (Coleoptera: Scarabaeidae), J Econ Entomol, vol.91, pp.428-432, 1998.

K. N. Cowles and H. Goodrich-blair, Expression and activity of a Xenorhabdus nematophila haemolysin required for full virulence towards Manduca sexta insects, Cell Microbiol, vol.7, pp.899-900, 2005.

J. M. Crawford, C. Portmann, X. Zhang, M. Roeffaers, and J. Clardy, Small molecule perimeter defense in entomopathogenic bacteria, Proc Natl Acad Sci U S A, vol.109, pp.10821-10826, 2012.

P. J. Daborn, A single Photorhabdus gene, makes caterpillars floppy (mcf), allows Escherichia coli to persist within and kill insects, Proc Natl Acad Sci U S A, vol.99, pp.10742-10747, 2002.

C. Dale and N. A. Moran, Molecular interactions between bacterial symbionts and their hosts, Cell, vol.126, pp.453-465, 2006.

A. C. Darby, Characteristics of the genome of Arsenophonus nasoniae, son-killer bacterium of the wasp Nasonia, Insect Mol Biol, vol.19, pp.75-89, 2010.

A. Dereeper, Phylogeny.fr: robust phylogenetic analysis for the non-specialist, Nucleic Acids Res, vol.36, pp.465-469, 2008.
URL : https://hal.archives-ouvertes.fr/lirmm-00324099

A. J. Dowling, The Mcf1 toxin induces apoptosis via the mitochondrial pathway and apoptosis is attenuated by mutation of the BH3-like domain, Cell Microbiol, vol.9, pp.2470-2484, 2007.
URL : https://hal.archives-ouvertes.fr/hal-02655409

E. Duchaud, The genome sequence of the entomopathogenic bacterium Photorhabdus luminescens, Nat Biotechnol, vol.21, pp.1307-1313, 2003.
URL : https://hal.archives-ouvertes.fr/hal-02681540

C. A. Easom and D. J. Clarke, HdfR is a regulator in Photorhabdus luminescens that modulates metabolism and symbiosis with the nematode Heterorhabditis, Environ Microbiol, vol.14, pp.953-966, 2012.

R. C. Edgar, MUSCLE: multiple sequence alignment with high accuracy and high throughput, Nucleic Acids Res, vol.32, pp.1792-1797, 2004.

R. U. Ehlers, Mass production of entomopathogenic nematodes for plant protection, Appl Microbiol Biotechnol, vol.56, pp.623-633, 2001.

R. U. Ehlers, A. Wulff, and A. Peters, Pathogenicity of axenic Steinernema feltiae, Xenorhabdus bovienii, and the bacto-helminthic complex to larvae of Tipula oleracea (Diptera) and Galleria mellonella (Lepidoptera), J Invertebr Pathol, vol.69, pp.212-217, 1997.

D. J. Fallon, Effect of entomopathogenic nematodes on Plectrodera scalator (Fabricius) (Coleoptera: Cerambycidae), 2006.

, J Invertebr Pathol, vol.92, pp.55-57

J. Felsenstein, Phylogenies from molecular sequences-inference and reliability, Annu Rev Genet, vol.22, pp.521-565, 1988.

M. Fischer-le-saux, E. Arteaga-hernandez, Z. Mracek, and N. E. Boemare, The bacterial symbiont Xenorhabdus poinarii (Enterobacteriaceae) is harbored by two phylogenetic related host nematodes: the entomopathogenic species Steinernema cubanum and Steinernema glaseri (Nematoda: Steinernematidae), FEMS Microbiol Ecol, vol.29, pp.149-157, 1999.

M. Fischer-le-saux, V. Viallard, B. Brunel, P. Normand, and N. E. Boemare, Polyphasic classification of the genus Photorhabdus and proposal of new taxa: P. luminescens subsp luminescens subsp nov., P. luminescens subsp akhurstii subsp nov., P. luminescens subsp laumondii subsp nov., P. temperata sp nov., P. temperata subsp temperata subsp nov and P. asymbiotica sp nov, vol.49, pp.1645-1656, 1999.
URL : https://hal.archives-ouvertes.fr/hal-02698057

S. Forst, B. Dowds, N. Boemare, and E. Stackebrandt, Xenorhabdus and Photorhabdus spp.: bugs that kill bugs, Annu Rev Microbiol, vol.51, pp.47-72, 1997.
URL : https://hal.archives-ouvertes.fr/hal-02697729

S. W. Fuchs, A. Proschak, T. W. Jaskolla, M. Karas, and H. B. Bode, Structure elucidation and biosynthesis of lysine-rich cyclic peptides in Xenorhabdus nematophila, Org Biomol Chem, vol.9, pp.3130-3132, 2011.

S. Gaudriault, Whole-genome comparison between Photorhabdus strains to identify genomic regions involved in the specificity of nematode interaction, J Bacteriol, vol.188, pp.809-814, 2006.
URL : https://hal.archives-ouvertes.fr/hal-02658588

L. Gavotte, A survey of the bacteriophage WO in the endosymbiotic bacteria Wolbachia, Mol Biol Evol, vol.24, pp.427-435, 2007.
URL : https://hal.archives-ouvertes.fr/hal-00434685

S. J. Giovannoni, Genome streamlining in a cosmopolitan oceanic bacterium, Science, vol.309, pp.1242-1245, 2005.

L. Gomez-valero, E. Rocha, A. Latorre, and F. J. Silva, Reconstructing the ancestor of Mycobacterium leprae: the dynamics of gene loss and genome reduction, Genome Res, vol.17, pp.1178-1185, 2007.

A. Gonzalez, L. Plener, S. Restrepo, C. Boucher, and S. Genin, Detection and functional characterization of a large genomic deletion resulting in decreased pathogenicity in Ralstonia solanacearum race 3 biovar 2 strains, Environ Microbiol, vol.13, pp.3172-3185, 2011.

H. Goodrich-blair and D. J. Clarke, Mutualism and pathogenesis in Xenorhabdus and Photorhabdus: two roads to the same destination, 2007.

, Mol Microbiol, vol.64, pp.260-268

M. Gualtieri, A. Aumelas, and J. O. Thaler, Identification of a new antimicrobial lysine-rich cyclolipopeptide family from Xenorhabdus nematophila, J Antibiot, vol.62, pp.295-302, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00378968

J. Guglielmini, L. Quintais, M. P. Garcillan-barcia, F. De-la-cruz, and E. Rocha, The repertoire of ICE in prokaryotes underscores the unity, diversity, and ubiquity of conjugation, PLoS Genet, vol.7, p.1002222, 2011.
URL : https://hal.archives-ouvertes.fr/pasteur-00647077

R. C. Han and R. U. Ehlers, Pathogenicity, development, and reproduction of Heterorhabditis bacteriophora and Steinernema carpocapsae under axenic in vivo conditions, J Invertebr Pathol, vol.75, pp.55-58, 2000.

E. E. Herbert, K. N. Cowles, and H. Goodrich-blair, CpxRA regulates mutualism and pathogenesis in Xenorhabdus nematophila, Appl Environ Microbiol, vol.73, pp.7826-7836, 2007.

S. J. Hinchliffe, M. C. Hares, A. J. Dowling, and R. H. Ffrench-constant, Insecticidal toxins from the Photorhabdus and Xenorhabdus bacteria, Open Toxinology J, vol.3, pp.83-100, 2010.

E. A. Hussa and H. Goodrich-blair, It takes a village: ecological and fitness impacts of multipartite mutualism, Annu Rev Microbiol, vol.67, pp.161-178, 2013.

G. Jubelin, Studies of the dynamic expression of the Xenorhabdus FliAZ regulon reveal atypical iron-dependent regulation of the flagellin and haemolysin genes during insect infection, Environ Microbiol, vol.13, pp.1271-1284, 2011.
URL : https://hal.archives-ouvertes.fr/hal-02644381

E. Jumas-bilak, S. Michaux-charachon, G. Bourg, D. O'callaghan, and M. Ramuz, Differences in chromosome number and genome rearrangements in the genus Brucella, Mol Microbiol, vol.27, pp.99-106, 1998.

S. K. Kim, Y. Flores-lara, and S. P. Stock, Morphology and ultrastructure of the bacterial receptacle in Steinernema nematodes (Nematoda: Steinernematidae), J Invertebr Pathol, vol.110, pp.366-374, 2012.

L. Klasson and S. Andersson, Evolution of minimal-gene-sets in hostdependent bacteria, Trends Microbiol, vol.12, pp.37-43, 2004.

S. Koskiniemi, S. Sun, O. G. Berg, and D. I. Andersson, Selection-driven gene loss in bacteria, PLoS Genet, vol.8, p.1002787, 2012.

C. H. Kuo and H. Ochman, Deletional bias across the three domains of life, 2009.

, Genome Biol Evol, vol.1, pp.145-152

A. E. Lang, Photorhabdus luminescens toxins ADP-ribosylate actin and RhoA to force actin clustering, Science, vol.327, pp.1139-1142, 2010.

L. Lango and D. J. Clarke, A metabolic switch is involved in lifestyle decisions in Photorhabdus luminescens, Mol Microbiol, vol.77, pp.1394-1405, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00560774

S. Leclercq, G. I. Cordaux, and R. , Remarkable abundance and evolution of mobile group II introns in Wolbachia bacterial endosymbionts, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00551571

, Mol Biol Evol, vol.28, pp.685-697

M. C. Lee and C. J. Marx, Repeated, selection-driven genome reduction of accessory genes in experimental populations, PLoS Genet, vol.8, p.1002651, 2012.

E. Lerat, V. Daubin, and N. A. Moran, From gene trees to organismal phylogeny in prokaryotes: the case of the gamma-proteobacteria, PLoS Biol, vol.1, pp.101-109, 2003.
URL : https://hal.archives-ouvertes.fr/hal-00427440

G. Lima-mendez, J. Van-helden, A. Toussaint, and R. Leplae, Prophinder: a computational tool for prophage prediction in prokaryotic genomes, Bioinformatics, vol.24, pp.863-865, 2008.
URL : https://hal.archives-ouvertes.fr/hal-01624303

S. L. Liu and K. E. Sanderson, I-CeuI reveals conservation of the genome of independent strains of Salmonella typhimurium, J Bacteriol, vol.177, pp.3355-3357, 1995.

E. C. Martens, F. M. Russell, and H. Goodrich-blair, Analysis of Xenorhabdus nematophila metabolic mutants yields insight into stages of Steinernema carpocapsae nematode intestinal colonization, Mol Microbiol, vol.58, pp.28-45, 2005.

J. P. Mccutcheon and N. A. Moran, Extreme genome reduction in symbiotic bacteria, Nature Rev Microbiol, vol.10, pp.13-26, 2012.

V. Miele, S. Penel, and L. Duret, Ultra-fast sequence clustering from similarity networks with SiLiX, BMC Bioinformatics, vol.12, p.116, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00698365

A. Mira, H. Ochman, and N. A. Moran, Deletional bias and the evolution of bacterial genomes, Trends Genet, vol.17, pp.589-596, 2001.

N. Morales-soto, S. Gaudriault, J. C. Ogier, K. Thappeta, and S. Forst, Comparative analysis of P2-type remnant prophage loci in Xenorhabdus bovienii and Xenorhabdus nematophila required for xenorhabdicin production, FEMS Microbiol Lett, vol.333, pp.69-76, 2012.
URL : https://hal.archives-ouvertes.fr/hal-02647376

N. A. Moran, Microbial minimalism: genome reduction in bacterial pathogens, Cell, vol.108, pp.583-586, 2002.

N. A. Moran, J. P. Mccutcheon, and A. Nakabachi, Genomics and evolution of heritable bacterial symbionts, Annu Rev Genet, vol.42, pp.165-190, 2008.

N. A. Moran and G. R. Plague, Genomic changes following host restriction in bacteria, Curr Opin Genet Dev, vol.14, pp.627-633, 2004.

C. Nielsen-leroux, S. Gaudriault, N. Ramarao, D. Lereclus, and A. Givaudan, How the insect pathogen bacteria Bacillus thuringiensis and Xenorhabdus/Photorhabdus occupy their hosts, Curr Opin Microbiol, vol.15, pp.220-231, 2012.
URL : https://hal.archives-ouvertes.fr/hal-01004177

A. I. Nilsson, Bacterial genome size reduction by experimental evolution, Proc Natl Acad Sci U S A, vol.102, pp.12112-12116, 2005.

J. C. Ogier, Units of plasticity in bacterial genomes: new insight from the comparative genomics of two bacteria interacting with invertebrates, Photorhabdus and Xenorhabdus, BMC Genomics, vol.11, p.568, 2010.
URL : https://hal.archives-ouvertes.fr/hal-02660280

S. S. Orchard and H. Goodrich-blair, An encoded N-terminal extension results in low levels of heterologous protein production in Escherichia coli, Microb Cell Fact, vol.4, p.22, 2005.

D. P. Pandey and K. Gerdes, Toxin-antitoxin loci are highly abundant in free-living but lost from host-associated prokaryotes, Nucleic Acids Res, vol.33, pp.966-976, 2005.

D. Park, Genetic analysis of xenocoumacin antibiotic production in the mutualistic bacterium Xenorhabdus nematophila, Mol Microbiol, vol.73, pp.938-949, 2009.

O. Penn, GUIDANCE: a web server for assessing alignment confidence scores, Nucleic Acids Res, vol.38, pp.23-28, 2010.

G. O. Poinar and G. M. Thomas, Significance of Achromobacter nematophilus Poinar and Thomas (Achromobacteraceae: Eubacteriales) in the development of the nematode, Neoaplectana sp. Steinernematidae). Parasitology, vol.56, pp.385-390, 1966.

S. Poitout, Elevage de plusieurs espè ces de lé pidoptè res Noctuidae sur milieu artificiel riche et sur milieu artificiel simplifié, Ann Zool Ecol Anim, vol.2, pp.79-91, 1970.

D. Posada and K. A. Crandall, MODELTEST: testing the model of DNA substitution, Bioinformatics, vol.14, pp.817-818, 1998.

G. R. Richards and H. Goodrich-blair, Masters of conquest and pillage: Xenorhabdus nematophila global regulators control transitions from virulence to nutrient acquisition, Cell Microbiol, vol.11, pp.1025-1033, 2009.

J. S. Rosa, C. Cabral, and N. Simoes, Differences between the pathogenic processes induced by Steinernema and Heterorhabditis (Nemata: Rhabditida) in Pseudaletia unipuncta (Insecta: Lepidoptera), 2002.

, J Invertebr Pathol, vol.80, pp.46-54

C. F. Schuster and R. Bertram, Toxin-antitoxin systems are ubiquitous and versatile modulators of prokaryotic cell fate, FEMS Microbiol Lett, vol.340, pp.73-85, 2013.

S. Hmb, Structure, diversity, and mobility of the Salmonella pathogenicity island 7 family of integrative and conjugative elements within Enterobacteriaceae, J Bacteriol, vol.194, pp.1494-1504, 2012.

E. W. Sevin and F. Barloy-hubler, RASTA-Bacteria: a web-based tool for identifying toxin-antitoxin loci in prokaryotes, Genome Biol, vol.8, p.155, 2007.
URL : https://hal.archives-ouvertes.fr/hal-00181090

M. Sicard, Stages of infection during the tripartite interaction between Xenorhabdus nematophila, its nematode vector, and insect hosts, Appl Environ Microbiol, vol.70, pp.6473-6480, 2004.
URL : https://hal.archives-ouvertes.fr/hal-02682919

F. J. Silva, A. Latorre, and A. Moya, Genome size reduction through multiple events of gene disintegration in Buchnera APS, Trends Genet, vol.17, pp.615-618, 2001.

H. Song, The early stage of bacterial genome-reductive evolution in the host, PLoS Pathog, vol.6, p.1000922, 2010.

M. L. Stein, One-shot NMR analysis of microbial secretions identifies highly potent proteasome inhibitor, Proc Natl Acad Sci U S A, vol.109, pp.18367-18371, 2012.

D. R. Sugar, Phenotypic variation and host interactions of Xenorhabdus bovienii SS-2004, the entomopathogenic symbiont of Steinernema jollieti nematodes, Environ Microbiol, vol.14, pp.924-939, 2012.

P. Tailliez, S. Pagè-s-s,-edgington, L. M. Tymo, and A. G. Buddie, Description of Xenorhabdus magdalenensis sp nov., the symbiotic bacterium associated with Steinernema australe, Int J Syst Evol Microbiol, vol.62, pp.1761-1765, 2012.
URL : https://hal.archives-ouvertes.fr/hal-02647002

P. Tailliez, N. Pagè-s-s,-ginibre, and N. Boemare, New insight into diversity in the genus Xenorhabdus, including the description of ten novel species, Int J Syst Evol Microbiol, vol.56, pp.2805-2818, 2006.
URL : https://hal.archives-ouvertes.fr/hal-02667800

P. Tailliez, Phylogeny of Photorhabdus and Xenorhabdus based on universally conserved protein-coding sequences and implications for the taxonomy of these two genera, Proposal of new taxa: X. vietnamensis sp. nov., P. luminescens subsp. caribbeanensis subsp. nov., P. luminescens subsp. hainanensis subsp. nov., P. temperata subsp. khanii subsp. nov., P. temperata subsp. tasmaniensis subsp. nov., and the reclassification of P. luminescens subsp. thracensis as P. temperata subsp. thracensis, vol.60, pp.1921-1937, 2010.
URL : https://hal.archives-ouvertes.fr/hal-02667022

C. Teyssier, Pulsed-field gel electrophoresis to study the diversity of whole-genome organization in the genus Ochrobactrum, Electrophoresis, vol.26, pp.2898-2907, 2005.

C. M. Theodore, J. B. King, J. L. You, and R. H. Cichewicz, Production of cytotoxic glidobactins/luminmycins by Photorhabdus asymbiotica in liquid media and live crickets, J Nat Prod, vol.75, pp.2007-2011, 2012.

H. Toh, Massive genome erosion and functional adaptations provide insights into the symbiotic lifestyle of Sodalis glossinidius in the tsetse host, Genome Res, vol.16, pp.149-156, 2006.

T. J. Treangen, A. L. Abraham, M. Touchon, and E. Rocha, Genesis, effects and fates of repeats in prokaryotic genomes, FEMS Microbiol Rev, vol.33, pp.539-571, 2009.
URL : https://hal.archives-ouvertes.fr/hal-02319386

D. Vallenet, MicroScope-an integrated microbial resource for the curation and comparative analysis of genomic and metabolic data, Nucleic Acids Res, vol.41, pp.636-647, 2013.

I. Vallet-gely, O. Opota, A. Boniface, A. Novikov, and B. Lemaitre, A secondary metabolite acting as a signalling molecule controls Pseudomonas entomophila virulence, Cell Microbiol, vol.12, pp.1666-1679, 2010.

L. Van-melderen, D. Bast, and M. S. , Bacterial toxin-antitoxin systems: more than selfish entities?, PLoS Genet, vol.5, p.100043, 2009.

A. M. Varani, P. Siguier, E. Gourbeyre, V. Charneau, and M. Chandler, ISsaga is an ensemble of web-based methods for high throughput identification and semi-automatic annotation of insertion sequences in prokaryotic genomes, Genome Biol, vol.12, p.30, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00667053

F. J. Veyrier, A. Dufort, and M. A. Behr, The rise and fall of the Mycobacterium tuberculosis genome, Trends Microbiol, vol.19, pp.156-161, 2011.

F. Vigneux, The xaxAB genes encoding a new apoptotic toxin from the insect pathogen Xenorhabdus nematophila are present in plant and human pathogens, J Biol Chem, vol.282, pp.9571-9580, 2007.
URL : https://hal.archives-ouvertes.fr/halsde-00366228

Y. Wang, R. Gaugler, and L. Cui, Variations in immune response of Popillia japonica and Acheta domesticus to Heterorhabditis bacteriophora and Steinernema species, J Nematol, vol.26, pp.11-18, 1994.

N. Waterfield, S. G. Kamita, B. D. Hammock, and R. Ffrench-constant, The Photorhabdus Pir toxins are similar to a developmentally regulated insect protein but show no juvenile hormone esterase activity, FEMS Microbiol Lett, vol.245, pp.47-52, 2005.

N. R. Waterfield, D. J. Bowen, J. D. Fetherston, R. D. Perry, and R. H. Ffrench-constant, The tc genes of Photorhabdus: a growing family, Trends Microbiol, vol.9, pp.185-191, 2001.

N. R. Waterfield and P. J. Daborn, Genomic islands in Photorhabdus, Trends Microbiol, vol.10, pp.541-545, 2002.

N. R. Waterfield, The insecticidal toxin makes caterpillars floppy 2 (Mcf2) shows similarity to HrmA, an avirulence protein from a plant pathogen, FEMS Microbiol Lett, vol.229, pp.265-270, 2003.

T. E. Wilkes, The genus Arsenophonus, Manipulative tenants, pp.225-244, 2011.

J. Zdziarski, C. Svanborg, B. Wullt, J. Hacker, and U. Dobrindt, Molecular basis of commensalism in the urinary tract: low virulence or virulence attenuation?, Infect Immun, vol.76, pp.695-703, 2008.