E. E. Herbert and H. Goodrich-blair, Friend and foe: the two faces of Xenorhabdus nematophila, Nat Rev Microbiol, vol.5, issue.8, pp.634-680, 2007.

P. Kumari, G. K. Mahapatro, N. Banerjee, and N. B. Sarin, Ectopic expression of GroEL from Xenorhabdus nematophila in tomato enhances resistance against Helicoverpa armigera and salt and thermal stress, Transgenic Res, vol.24, issue.5, pp.859-73, 2015.

H. Zhang, J. Mao, F. Liu, and F. Zeng, Expression of a nematode symbiotic bacterium-derived protease inhibitor protein in tobacco enhanced tolerance against Myzus persicae, Plant Cell Rep, vol.31, issue.11, pp.1981-1990, 2012.

G. Bisch, J. C. Ogier, C. Medigue, Z. Rouy, S. Vincent et al., Comparative genomics between two Xenorhabdus bovienii strains highlights differential evolutionary scenarios within an entomopathogenic bacterial species, Genome Biol Evol, vol.8, issue.1, pp.148-60, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01837293

V. L. Challinor and H. B. Bode, Bioactive natural products from novel microbial sources, Ann N Y Acad Sci, vol.1354, pp.82-97, 2015.

J. M. Chaston, G. Suen, S. L. Tucker, A. W. Andersen, A. Bhasin et al., The entomopathogenic bacterial endosymbionts Xenorhabdus and Photorhabdus: convergent lifestyles from divergent genomes, PLoS One, vol.6, issue.11, p.27909, 2011.

J. C. Ogier, S. Pages, G. Bisch, H. Chiapello, C. Medigue et al., Attenuated virulence and genomic reductive evolution in the entomopathogenic bacterial symbiont species
URL : https://hal.archives-ouvertes.fr/hal-01837258

, Genome Biol Evol, vol.6, issue.6, pp.1495-513, 2014.

K. B. Nguyen and G. Smart, Steinernema scapterisci, new species (Rhabditida: Steinernematidae), J Nematol, vol.22, issue.2, pp.187-99, 1990.

K. B. Nguyen, A new nematode parasite of mole crickets: its taxonomy, biology and potential for biological control, 1988.

E. Bonifassi, M. Fischer-le-saux, N. Boemare, A. Lanois, C. Laumond et al., Gnotobiological study of infective juveniles and symbionts of Steinernema scapterisci: a model to clarify the concept of the natural occurrence of monoxenic associations in entomopathogenic nematodes, J Invertebr Pathol, vol.74, pp.164-72, 1999.

D. Lu, C. Sepulveda, and A. R. Dillman, Infective juveniles of the entomopathogenic nematode Steinernema scapterisci are preferentially activated by cricket tissue, PLoS One, vol.12, issue.1, p.169410, 2017.

K. Lengyel, E. Lang, A. Fodor, E. Szallas, P. Schumann et al., Description of four novel species of Xenorhabdus, family Enterobacteriaceae: Xenorhabdus budapestensis sp. nov., Xenorhabdus ehlersii sp. nov., Xenorhabdus innexi sp. nov., and Xenorhabdus szentirmaii sp, Syst Appl Microbiol, vol.28, pp.115-137, 2005.

M. Sicard, H. Ramone, L. Brun, N. Pages, S. Moulia et al., Specialization of the entomopathogenic nematode Steinernema scaptersci with its mutualistic Xenorhabdus symbiont, Naturwissenschaften, vol.92, pp.472-478, 2005.

S. E. Spiridonov, A. P. Reid, K. Podrucka, S. A. Subbotin, and M. Moens, Phylogenetic relationships within the genus Steinernema (Nematoda: Rhabditida) as inferred from analyses of sequences of the ITS1-5.8S-ITS2 region of rDNA and morphological features, Nematology, vol.6, pp.547-66, 2004.

S. A. Nadler, E. Bolotin, and S. P. Stock, Phylogenetic relationships of Steinernema Travassos, 1927 (Nematoda: Cephalobina: Steinernematidae) based on nuclear, mitochondrial and morphological data, Syst Parasitol, vol.63, issue.3, pp.161-81, 2006.

M. M. Lee and S. P. Stock, A multilocus approach to assessing co-evolutionary relationships between Steinernema spp. (Nematoda: Steinernematidae) and their bacterial symbionts Xenorhabdus spp. (gamma-Proteobacteria: Enterobacteriaceae), Syst Parasitol, vol.77, issue.1, pp.1-12, 2010.

A. R. Dillman, M. Macchietto, C. F. Porter, A. Rogers, B. Williams et al., Comparative genomics of Steinernema reveals deeply conserved gene regulatory networks, Genome Biol, vol.16, issue.1, p.200, 2015.

K. B. Nguyen and G. Smart, Pathogenicity of Steinernema scapterisci to selected invertebrates, J Nematol, vol.23, issue.1, pp.7-11, 1991.

Y. Wang, R. Gaugler, and L. Cui, Variations in immune response of Popillia japonica and Acheta domesticus to Heterorhabditis bacteriophora and Steinernema species, J Nematol, vol.26, issue.1, pp.11-19, 1994.

T. P. Bonner, Changes in the structure of Nippostrongylus brasiliensis intestinal cells during development from the free-living to the parasitic stages, J Parasitol, vol.65, issue.5, pp.745-50, 1979.

J. M. Hawdon and G. A. Schad, Serum-stimulated feeding in vitro by third-stage infective larvae of the canine hookworm Ancylostoma caninum, J Parasitol, vol.76, issue.3, pp.394-402, 1990.

N. Balasubramanian, Y. J. Hao, D. Toubarro, G. Nascimento, and N. Simoes, Purification, biochemical and molecular analysis of a chymotrypsin protease with prophenoloxidase suppression activity from the entomopathogenic nematode Steinernema carpocapsae, Int J Parasitol, vol.39, issue.9, pp.975-84, 2009.

D. Toubarro, M. Lucena-robles, G. Nascimento, G. Costa, R. Montiel et al., An apoptosis-inducing serine protease secreted by the entomopathogenic nematode Steinernema carpocapsae, Int J Parasitol, vol.39, issue.12, pp.1319-1349, 2009.

M. Sicard, L. Brun, N. Pages, S. Godelle, B. Boemare et al., Effect of native Xenorhabdus on the fitness of their Steinernema hosts: contrasting types of interactions, Parasitol Res, vol.91, pp.520-524, 2003.

P. S. Grewal, M. Matsuura, and V. Converse, Mechanisms of specificity of association between the nematode Steinernema scapterisci and its symbiotic bacterium, Parasitology, vol.114, issue.5, pp.483-491, 1997.

D. K. Mitani, H. K. Kaya, and H. Goodrich-blair, Comparative study of the entomopathogenic nematode, Steinernema carpocapsae, reared on mutant and wild-type Xenorhabdus nematophila, Biol Control, vol.29, pp.382-91, 2004.

E. Hussa and H. Goodrich-blair, Rearing and injection of Manduca sexta larvae to assess bacterial virulence, J Vis Exp, vol.70, p.4295, 2012.

J. C. Ensign, Q. Lan, and D. H. Dyer, inventors; Mosquitocidal Xenorhabdus, lipopeptide and methods. 2014 US Patent US20140274880 A1

I. H. Kim, J. Ensign, D. Y. Kim, H. Y. Jung, N. R. Kim et al., Specificity and putative mode of action of a mosquito larvicidal toxin from the bacterium Xenorhabdus innexi, J Invertebr Pathol, vol.149, pp.21-29, 2017.

K. E. Murfin, J. Chaston, and H. Goodrich-blair, Visualizing bacteria in nematodes using fluorescence microscopy, J Vis Exp, vol.68, p.4298, 2012.

J. L. Veesenmeyer, A. W. Andersen, X. Lu, E. A. Hussa, K. E. Murfin et al., NilD CRISPR RNA contributes to Xenorhabdus nematophila colonization of symbiotic host nematodes, Mol Microbiol, vol.93, issue.5, pp.1026-1068, 2014.

G. B. Dunphy, Interaction of mutants of Xenorhabdus nematophilus (Enterobacteriaceae) with antibacterial systems of Galleria mellonella larvae (Insecta: Pyralidae), Can J Microbiol, vol.40, issue.3, pp.161-169, 1994.

D. Blackburn, P. L. Wood, T. J. Burk, B. Crawford, S. M. Wright et al., Evolution of virulence in Photorhabdus spp., entomopathogenic nematode symbionts, Syst Appl Microbiol, vol.39, issue.3, pp.173-182, 2016.

L. Cerenius and K. Söderhäll, The prophenoloxidase-activating system in invertebrates, Immunol Rev, vol.198, pp.116-142, 2004.

S. Seo, S. Lee, Y. Hong, and Y. Kim, Phospholipase A2 inhibitors synthesized by two entomopathogenic bacteria, Xenorhabdus nematophila and Photorhabdus temperata subsp. temperata, Appl Environ Microbiol, vol.78, issue.11, pp.3816-3839, 2012.

C. J. Song, S. Seo, S. Shrestha, and Y. Kim, Bacterial metabolites of an entomopathogenic bacterium, Xenorhabdus nematophila, inhibit a catalytic activity of phenoloxidase of the diamondback moth, Plutella xylostella, J Microbiol Biotechnol, vol.21, issue.3, pp.317-339, 2011.

J. M. Crawford, C. Portmann, X. Zhang, M. B. Roeffaers, and J. Clardy, Small molecule perimeter defense in entomopathogenic bacteria, Proc Natl Acad Sci, vol.109, issue.27, pp.10821-10827, 2012.

C. Condon, D. Liveris, C. Squires, I. Schwartz, and C. L. Squires, rRNA operon multiplicity in Escherichia coli and the physiological implications of rrn inactivation, J Bacteriol, vol.177, issue.14, pp.4152-4158, 1995.

T. Asai, C. Condon, J. Voulgaris, D. Zaporojets, B. Shen et al., Construction and initial characterization of Escherichia coli strains with few or no intact chromosomal rRNA operons, J Bacteriol, vol.181, issue.12, pp.3803-3812, 1999.

Z. Gyorfy, G. Draskovits, V. Vernyik, F. F. Blattner, T. Gaal et al., Engineered ribosomal RNA operon copy-number variants of E. coli reveal the evolutionary trade-offs shaping rRNA operon number, Nucleic Acids Res, vol.43, issue.3, pp.1783-94, 2015.

A. Castagnola and S. P. Stock, Common virulence factors and tissue targets of entomopathogenic bacteria for biological control of lepidopteran pests, Insects, vol.5, issue.1, pp.139-66, 2014.

D. Vallenet, L. Labarre, Z. Rouy, V. Barbe, S. Bocs et al., MaGe: a microbial genome annotation system supported by synteny results, Nucleic Acids Res, vol.34, issue.1, pp.53-65, 2006.

N. Waterfield, D. J. Bowen, J. D. Fetherston, R. D. Perry, and R. H. Ffrench-constant, The toxin complex genes of Photorhabdus: a growing gene family, Trends Microbiol, vol.9, pp.185-91, 2001.

N. Waterfield, P. J. Dabord, A. J. Dowling, and G. Yang, Hares M. ffrench-Constant RH. The insecticidal toxin makes caterpillars floppy 2 (Mcf2) shows similarity to HrmA, an avirulence protein from a plant pathogen, FEMS Microbiol Lett, vol.229, pp.265-70, 2003.

N. Waterfield and S. G. Kamita, Hammock BD, ffrench-Constant R. The Photorhabdus Pir toxins are similar to a developmentally regulated insect protein but show no juvenile hormone esterase activity, FEMS Microbiol Lett, vol.245, pp.47-52, 2005.

F. Vigneux, R. Zumbihl, G. Jubelin, C. Ribeiro, J. Poncet et al., The xaxAB genes encoding a new apoptotic toxin from the insect pathogen Xenorhabdus nematophila are present in plant and human pathogens, J Biol Chem, vol.282, pp.9571-80, 2007.
URL : https://hal.archives-ouvertes.fr/halsde-00366228

H. E. Gavin and K. J. Satchell, MARTX toxins as effector delivery platforms, Pathog Dis, vol.73, issue.9, p.92, 2015.

B. S. Kim, H. E. Gavin, and K. J. Satchell, Distinct roles of the repeat-containing regions and effector domains of the Vibrio vulnificus multifunctional-autoprocessing repeats-in-toxin (MARTX) toxin, MBio, vol.6, issue.2, 2015.

I. Antic, M. Biancucci, Y. Zhu, D. R. Gius, and K. J. Satchell, Site-specific processing of Ras and Rap1 switch I by a MARTX toxin effector domain, Nat Commun, vol.6, p.7396, 2015.

M. Biancucci, A. E. Rabideau, Z. Lu, A. R. Loftis, B. L. Pentelute et al., Substrate recognition of MARTX Ras/Rap1-specific Endopeptidase, Biochemist, vol.56, issue.21, pp.2747-57, 2017.

K. J. Satchell, Structure and function of MARTX toxins and other large repetitive RTX proteins, Annu Rev Microbiol, vol.65, pp.71-90, 2011.

K. J. Satchell, Multifunctional-autoprocessing repeats-in-toxin (MARTX) toxins of Vibrios, Microbiol Spectr, vol.3, issue.3, 2015.

F. Jacob-dubuisson, C. Locht, and R. Antoine, Two-partner secretion in gramnegative bacteria: a thrifty, specific pathway for large virulence proteins, Mol Microbiol, vol.40, issue.2, pp.306-319, 2001.

K. Nikolakakis, S. Amber, J. S. Wilbur, E. J. Diner, S. K. Aoki et al., The toxin/immunity network of Burkholderia pseudomallei contact-dependent growth inhibition (CDI) systems, Mol Microbiol, vol.84, issue.3, pp.516-545, 2012.

S. K. Aoki, S. J. Poole, C. S. Hayes, and D. A. Low, Toxin on a stick: modular CDI toxin delivery systems play roles in bacterial competition, Virulence, vol.2, issue.4, pp.356-365, 2011.

S. K. Aoki, R. Pamma, A. D. Hernday, J. E. Bickham, B. A. Braaten et al., Contactdependent inhibition of growth in Escherichia coli, Science, vol.309, issue.5738, pp.1245-1253, 2005.

S. K. Aoki, E. J. Diner, C. T. De-roodenbeke, B. R. Burgess, S. J. Poole et al., A widespread family of polymorphic contact-dependent toxin delivery systems in bacteria, Nature, vol.468, issue.7322, pp.439-481, 2010.

J. C. Ogier, B. Duvic, A. Lanois, A. Givaudan, and S. Gaudriault, A new member of the growing family of contact-dependent growth inhibition systems in Xenorhabdus doucetiae, PLoS One, vol.11, issue.12, p.167443, 2016.
URL : https://hal.archives-ouvertes.fr/hal-02154470

K. N. Cowles and H. Goodrich-blair, Expression and activity of a Xenorhabdus nematophila haemolysin required for full virulence towards Manduca sexta insects, Cell Microbiol, vol.2, pp.209-228, 2005.

J. Brillard, C. Ribeiro, N. Boemare, M. Brehélin, and A. Givaudan, Two distinct hemolytic activities in Xenorhabdus nematophila are active against immunocompetent insect cells, Appl Environ Microbiol, vol.67, pp.2515-2540, 2001.

Z. C. Ruhe, D. A. Low, and C. S. Hayes, Bacterial contact-dependent growth inhibition, Trends Microbiol, vol.21, issue.5, pp.230-237, 2013.

B. T. Ho, T. G. Dong, and J. J. Mekalanos, A view to a kill: the bacterial type VI secretion system, Cell Host Microbe, vol.15, issue.1, pp.9-21, 2014.

A. Hachani, L. P. Allsopp, Y. Oduko, and A. Filloux, The VgrG proteins are "a la carte" delivery systems for bacterial type VI effectors, J Biol Chem, vol.289, issue.25, pp.17872-84, 2014.

J. D. Mougous, C. A. Gifford, T. L. Ramsdell, and J. J. Mekalanos, Threonine phosphorylation post-translationally regulates protein secretion in Pseudomonas aeruginosa, Nat Cell Biol, vol.9, issue.7, pp.797-803, 2007.

F. R. Cianfanelli, L. Monlezun, and S. J. Coulthurst, Aim, load, fire: the type VI secretion system, a bacterial nanoweapon, Trends Microbiol, vol.24, issue.1, pp.51-62, 2016.

J. C. Whitney, C. M. Beck, Y. A. Goo, A. B. Russell, B. N. Harding et al., Genetically distinct pathways guide effector export through the type VI secretion system, Mol Microbiol, vol.92, issue.3, pp.529-571, 2014.

D. D. Bondage, J. S. Lin, L. S. Ma, C. H. Kuo, and E. M. Lai, VgrG C terminus confers the type VI effector transport specificity and is required for binding with PAAR and adaptor-effector complex, Proc Natl Acad Sci U S A, vol.113, issue.27, pp.3931-3971, 2016.

A. P. Jackson, G. H. Thomas, J. Parkhill, and N. R. Thomson, Evolutionary diversification of an ancient gene family (rhs) through C-terminal displacement, BMC Genomics, vol.10, p.584, 2009.

A. Diniz, J. Liu, Y. C. Coulthurst, and S. J. , Molecular weaponry: diverse effectors delivered by the type VI secretion system, Cell Microbiol, vol.17, issue.12, pp.1742-51, 2015.

A. Jamet and X. Nassif, New players in the toxin field: polymorphic toxin systems in bacteria, MBio, vol.6, issue.3, pp.285-300, 2015.

K. Nikolouli and D. Mossialos, Bioactive compounds synthesized by nonribosomal peptide synthetases and type-I polyketide synthases discovered through genome-mining and metagenomics, Biotechnol Lett, vol.34, issue.8, pp.1393-403, 2012.

L. Du, C. Sánchez, and B. Shen, Hybrid peptide-polyketide natural products: biosynthesis and prospects toward engineering novel molecules, Metab Eng, vol.3, issue.1, pp.78-95, 2001.

M. A. Beresky and D. W. Hall, The influence of phenylthiourea on encapsulation, melanization, and survival in larvae of the mosquito Aedes aegypti parasitized by the nematode Neoaplectana carpocapsae, J Invertebr Pathol, vol.29, issue.1, pp.74-80, 1977.

O. S. Da-silva, G. R. Prado, J. L. Da-silva, C. E. Silva, M. Da-costa et al., Oral toxicity of Photorhabdus luminescens and Xenorhabdus nematophila (Enterobacteriaceae) against Aedes aegypti (Diptera: Culicidae), Parasitol Res, vol.112, issue.8, pp.2891-2897, 2013.

M. M. Benning, G. Wesenberg, R. Liu, K. L. Taylor, D. Dunaway-mariano et al., The three-dimensional structure of 4-hydroxybenzoyl-CoA thioesterase from Pseudomonas sp. strain CBS-3, J Biol Chem, vol.273, issue.50, pp.33572-33581, 1998.

M. Wilcke and S. E. Alexson, Characterization of acyl-CoA thioesterase activity in isolated rat liver peroxisomes, FEBS J, vol.222, issue.3, pp.803-814, 1994.

L. T. Svensson, S. E. Alexson, and J. K. Hiltunen, Very long chain and long chain acyl-coA thioesterases in rat liver mitochondria. Identification, purification, characterization and induction by peroxisome proliferators, J Biol Chem, vol.270, issue.20, pp.12177-83, 1995.

M. C. Hunt, K. Solaas, B. F. Kase, and S. E. Alexson, Characterization of an acyl-coA thioesterase that functions as a major regulator of peroxisomal lipid metabolism, J Biol Chem, vol.277, issue.2, pp.1128-1166, 2002.

J. Masschelein, W. Mattheus, L. J. Gao, P. Moons, R. Van-houdt et al., A PKS/NRPS/FAS hybrid gene cluster from Serratia plymuthica RVH1 encoding the biosynthesis of three broad spectrum, zeamine-related antibiotics, PLoS One, vol.8, issue.1, p.54143, 2013.

S. W. Fuchs, F. Grundmann, M. Kurz, M. Kaiser, and H. B. Bode, Fabclavines: bioactive peptide-polyketide-polyamino hybrids from Xenorhabdus, Chembiochem, vol.15, issue.4, pp.512-518, 2014.

S. J. Pidot, S. Coyne, F. Kloss, and C. Hertweck, Antibiotics from neglected bacterial sources, Int J Med Microbiol, vol.304, issue.1, pp.14-22, 2014.

F. Bashey, H. Hawlena, and C. M. Lively, Alternative paths to success in a parasite community: within-host competition can favor higher virulence or direct interference, Evolution, vol.67, issue.3, pp.900-907, 2013.

K. E. Murfin, M. M. Lee, J. L. Klassen, B. R. Mcdonald, B. Larget et al., Xenorhabdus bovienii strain diversity impacts coevolution and symbiotic maintenance with Steinernema spp. nematode hosts, MBio, vol.6, issue.3, p.76, 2015.

P. Tailliez, C. Laroui, N. Ginibre, P. A. Pages, S. Boemare et al., Phylogeny of Photorhabdus and Xenorhabdus based on universally conserved proteincoding sequences and implications for the taxonomy of these two genera, Proposal of new taxa: X. vietnamensis sp. nov., P. luminescens subsp. caribbeanensis subsp. nov., P. luminescens subsp. hainanensis subsp. nov., P. temperata subsp. khanii subsp. nov., P. temperata subsp. tasmaniensis subsp. nov., and the reclassification of P. luminescens subsp. thracensis as P. temperata subsp. thracensis comb. nov, vol.60, pp.1921-1958, 2010.

V. Converse and P. S. Grewal, Virulence of entomopathogenic nematodes to the western masked chafer Cyclocephala hirta (Coleoptera: Scarabaeidae), J Econ Entomol, vol.91, issue.2, pp.428-460, 1998.

J. S. Rosa, C. Cabral, and N. Simoes, Differences between the pathogenic processes induced by Steinernema and Heterorhabditis (Nemata: Rhabditida) in Psudaletia unipuncta (Insecta: Lepidoptera), J Invertebr Pathol, vol.80, pp.46-54, 2002.

D. J. Fallon, L. F. Solter, L. S. Bauer, D. L. Miller, J. R. Cate et al., Effect of entomopathogenic nematodes on Plectrodera scalator (Fabricius) (Coleoptera: Cerambycidae), J Invertebr Pathol, vol.92, issue.1, pp.55-62, 2006.

H. B. Bode, Entomopathogenic bacteria as a source of secondary metabolites, Curr Opin Chem Biol, vol.13, issue.2, pp.224-254, 2009.

E. Boszormenyi, T. Ersek, A. Fodor, A. M. Fodor, L. S. Foldes et al., Isolation and activity of Xenorhabdus antimicrobial compounds against the plant pathogens Erwinia amylovora and Phytophthora nicotianae, J Appl Microbiol, vol.107, issue.3, pp.746-59, 2009.

S. W. Fuchs, C. C. Sachs, C. Kegler, F. I. Nollmann, M. Karas et al., Neutral loss fragmentation pattern based screening for arginine-rich natural products in Xenorhabdus and Photorhabdus, Anal Chem, vol.84, issue.16, pp.6948-55, 2012.

J. E. Hellberg, M. A. Matilla, and G. P. Salmond, The broad-spectrum antibiotic, zeamine, kills the nematode worm Caenorhabditis elegans, Front Microbiol, vol.6, p.137, 2015.

J. Masschelein, C. Clauwers, K. Stalmans, K. Nuyts, D. Borggraeve et al., The zeamine antibiotics affect the integrity of bacterial membranes

, Appl Environ Microbiol, vol.81, issue.3, pp.1139-1185, 2015.

T. G. Andreadis and D. W. Hall, Neoaplectana carpocapsae:encapsulation in Aedes aegypti and changes in host hemocytes and hemolymph proteins, Exp Parasitol, vol.39, issue.2, pp.252-61, 1976.

C. Carrillo, J. A. Teruel, F. J. Aranda, and A. Ortiz, Molecular mechanism of membrane permeabilization by the peptide antibiotic surfactin, Biochim Biophys Acta, vol.1611, issue.1-2, pp.91-98, 2003.

S. K. Straus and R. Hancock, Mode of action of the new antibiotic for grampositive pathogens daptomycin: comparison with cationic antimicrobial peptides and lipopeptides, Biochim Biophys Acta, vol.1758, issue.9, pp.1215-1238, 2006.

L. K. Assie, M. Deleu, L. Arnaud, M. Paquot, P. Thonart et al., Insecticide activity of surfactins and iturins from a biopesticide Bacillus subtilis Cohn (S499 strain), Meded Rijksuniv Gent Fak Landbouwkd Toegep Biol Wet, vol.67, issue.3, pp.647-55, 2002.

K. Das and A. K. Mukherjee, Assessment of mosquito larvicidal potency of cyclic lipopeptides produced by Bacillus subtilis strains, Acta Trop, vol.97, issue.2, pp.168-73, 2006.

M. Ongena, G. Henry, and P. Thonart, The Roles of Cyclic Lipopeptides in the Biocontrol Activity of Bacillus subtilis, Recent Developments in Management of Plant Diseases. Plant Pathology in the 21st Century (Contributions to the 9th International Congress, vol.1, 2010.

P. Singh and S. S. Cameotra, Potential applications of microbial surfactants in biomedical sciences, Trends Biotechnol, vol.22, issue.3, pp.142-148, 2004.

N. E. Boemare and R. J. Akhurst, Biochemical and physiological characterization of colony form variants in Xenorhabdus spp. (Enterobacteriaceae), J Gen Microbiol, vol.134, pp.751-61, 1988.

J. Xu and R. E. Hurlbert, Toxicity of irradiated media for Xenorhabdus spp, Appl Environ Microbiol, vol.56, pp.815-823, 1990.

E. I. Vivas and H. Goodrich-blair, Xenorhabdus nematophilus as a model for hostbacterium interactions: rpoS is necessary for mutualism with nematodes, J Bacteriol, vol.183, issue.16, pp.4687-93, 2001.

A. R. Dillman, J. M. Chaston, B. J. Adams, T. A. Ciche, H. Goodrich-blair et al., An entomopathogenic nematode by any other name, PLoS Path, vol.8, issue.3, p.1002527, 2012.

K. Krebs and Q. Lan, Isolation and expression of a sterol carrier protein-2 gene from the yellow fever mosquito, Aedes aegypti, Insect Mol Biol, vol.12, issue.1, pp.51-60, 2003.

L. N. Pham, M. S. Dionne, M. Shirasu-hiza, and D. S. Schneider, A specific primed immune response in Drosophila is dependent on phagocytes, PLoS Path, vol.3, issue.3, p.26, 2007.

G. White, Method for obtaining infective nematode larvae from cultures, Science, vol.66, pp.302-305, 1927.

Y. Bao, D. P. Lies, H. Fu, and G. P. Roberts, An improved Tn7-based system for the single-copy insertion of cloned genes into chromosomes of gram-negative bacteria, Gene, vol.109, pp.167-175, 1991.

T. K. Teal, D. P. Lies, B. J. Wold, and D. K. Newman, Spatiometabolic stratification of Shewanella oneidensis biofilms, Appl Environ Microbiol, vol.72, issue.11, 2006.

S. S. Orchard and H. Goodrich-blair, Identification and functional characterization of a Xenorhabdus nematophila oligopeptide permease, Appl Environ Microbiol, vol.70, issue.9, pp.5621-5628, 2004.

J. Sambrook, E. F. Fritsch, and T. Maniatis, Molecular cloning: a laboratory manual, 1989.

S. F. Altschul, T. L. Madden, A. A. Schaffer, J. Zhang, Z. Zhang et al., Gapped BLAST and PSI-BLAST: a new generation of protein database search programs, Nucleic Acids Res, vol.25, issue.17, pp.3389-402, 1997.

N. Galtier, M. Gouy, and C. Gautier, SEAVIEW and PHYLO_WIN: two graphic tools for sequence alignment and molecular phylogeny, Comput Appl Biosci, vol.12, issue.6, pp.543-551, 1996.
URL : https://hal.archives-ouvertes.fr/hal-00435028

J. Castresana, Selection of conserved blocks from multiple alignments for their use in phylogenetic analysis, Mol Biol Evol, vol.17, issue.4, pp.540-52, 2000.

K. Blin, M. H. Medema, D. Kazempour, M. A. Fischbach, R. Breitling et al., antiSMASH 2.0-a versatile platform for genome mining of secondary metabolite producers, Nucleic Acids Res, vol.41, pp.204-216, 2013.

M. Röttig, M. H. Medema, K. Blin, T. Weber, C. Rausch et al., NRPSpredictor2-a web server for predicting NRPS adenylation domain specificity, Nucl Ac Res, vol.39, pp.362-369, 2011.

Y. Zhang, I-TASSER server for protein 3D structure prediction, BMC Bioinformat, vol.9, issue.1, p.40, 2008.

G. R. Richards and H. Goodrich-blair, Examination of Xenorhabdus nematophila lipases in pathogenic and mutualistic host interactions reveals a role for xlpA in nematode progeny production, Appl Environ Microbiol, vol.76, issue.1, pp.221-230, 2010.

A. Bhasin, J. M. Chaston, and H. Goodrich-blair, Mutational analyses reveal overall topology and functional regions of NilB, a bacterial outer membrane protein required for host association in a model of animal-microbe mutualism, J Bacteriol, vol.194, issue.7, pp.1763-76, 2012.

D. R. Sugar, K. E. Murfin, J. M. Chaston, A. W. Andersen, G. R. Richards et al., Phenotypic variation and host interactions of Xenorhabdus bovienii SS-2004, the entomopathogenic symbiont of Steinernema jollieti nematodes, Env Microbiol, vol.14, issue.4, pp.924-963, 2012.