S. C. Lu and . S-adenosylmethionine, The international journal of biochemistry & cell biology, vol.32, pp.391-395, 2000.

B. F. Vanyushin, Adenine Methylation in Eukaryotic DNA, Molecular Biology, vol.39, pp.473-481, 2005.

B. F. Vanyushin, A. L. Mazin, V. K. Vasilyev, and A. N. Belozersky, The content of 5-methylcytosine in animal DNA: The species and tissue specificity, Biochimica et Biophysica Acta (BBA)-Nucleic Acids and Protein Synthesis, vol.299, pp.397-403, 1973.

M. Ehrlich, DNA methylation in thermophilic bacteria: N4-methylcytosine, 5-methylcytosine, and N6-methyladenine, Nucleic Acids Res, vol.13, pp.1399-1412, 1985.

J. Casadesus, Bacterial DNA Methylation and Methylomes. Advances in experimental medicine and biology, vol.945, pp.35-61, 2016.

S. J. Clark, A. Statham, C. Stirzaker, P. L. Molloy, and M. Frommer, DNA methylation: bisulphite modification and analysis, Nature protocols, vol.1, pp.2353-2364, 2006.

B. A. Flusberg, Direct detection of DNA methylation during single-molecule, real-time sequencing, Nature methods, vol.7, pp.461-465, 2010.

W. A. Loenen, D. T. Dryden, E. A. Raleigh, G. G. Wilson, and N. E. Murray, Highlights of the DNA cutters: a short history of the restriction enzymes, Nucleic Acids Res, vol.42, pp.3-19, 2014.

R. J. Roberts, T. Vincze, J. Posfai, and D. Macelis, REBASE-a database for DNA restriction and modification: enzymes, genes and genomes, Nucleic Acids Res, vol.43, pp.298-299, 2015.

M. Marinus, DNA Mismatch Repair. EcoSal Plus, 2012.

B. A. Braaten, Leucine-responsive regulatory protein controls the expression of both the pap andfan pili operons in Escherichia coli, Proceedings of the National Academy of Sciences, vol.89, pp.4250-4254, 1992.

B. A. Braaten, X. Nou, L. S. Kaltenbach, and D. A. Low, Methylation patterns in pap regulatory DNA control pyelonephritis-associated pili phase variation in E. coli, Cell, vol.76, pp.577-588, 1994.

L. Chen, Alteration of DNA adenine methylase (Dam) activity in Pasteurella multocida causes increased spontaneous mutation frequency and attenuation in mice, Microbiology, vol.149, pp.2283-2290, 2003.

T. E. Erova, Mutations within the catalytic motif of DNA adenine methyltransferase (Dam) of Aeromonas hydrophila cause the virulence of the Dam-overproducing strain to revert to that of the wild-type phenotype, Infection and Immunity, vol.74, pp.5763-5772, 2006.

D. M. Heithoff, Salmonella DNA adenine methylase mutants confer cross-protective immunity, Infect Immun, vol.69, pp.6725-6730, 2001.

S. M. Julio, DNA adenine methylase is essential for viability and plays a role in the pathogenesis of Yersinia pseudotuberculosis and Vibrio cholerae, Infect Immun, vol.69, pp.7610-7615, 2001.

S. M. Julio, D. M. Heithoff, R. L. Sinsheimer, D. A. Low, and M. J. Mahan, DNA adenine methylase overproduction in Yersinia pseudotuberculosis alters YopE expression and secretion and host immune responses to infection, Infect Immun, vol.70, pp.1006-1009, 2002.

A. Payelleville, DNA Adenine Methyltransferase (Dam) Overexpression Impairs Photorhabdus luminescens Motility andVirulence, Frontiers in microbiology 8, 1671, 2017.

D. M. Heithoff, R. L. Sinsheimer, D. A. Low, and M. J. Mahan, An essential role for DNA adenine methylation in bacterial virulence, Science, vol.284, pp.967-970, 1999.
DOI : 10.1126/science.284.5416.967

J. S. Mehling, H. Lavender, and S. Clegg, A Dam methylation mutant of Klebsiella pneumoniae is partially attenuated, FEMS Microbiology Letters, vol.268, pp.187-193, 2007.
DOI : 10.1111/j.1574-6968.2006.00581.x

URL : https://academic.oup.com/femsle/article-pdf/268/2/187/19428266/268-2-187.pdf

V. L. Robinson, P. C. Oyston, and R. W. Titball, A dam mutant of Yersinia pestis is attenuated and induces protection against plague, FEMS Microbiology Letters, vol.252, pp.251-256, 2005.

M. E. Watson, J. Jarisch, and A. L. Smith, Inactivation of deoxyadenosine methyltransferase (dam) attenuates Haemophilus influenzae virulence, Molecular Microbiology, vol.53, pp.651-664, 2004.
DOI : 10.1111/j.1365-2958.2004.04140.x

URL : http://onlinelibrary.wiley.com/doi/10.1111/j.1365-2958.2004.04140.x/pdf

H. Wu, Inactivation of DNA adenine methyltransferase alters virulence factors in Actinobacillus actinomycetemcomitans, Oral Microbiology and Immunology, vol.21, pp.238-244, 2006.

M. G. Marinus, A. Lobner-olesen, and . Dna-methylation, Eco Sal Plus, vol.6, 2014.

K. T. Militello, A. H. Mandarano, O. Varechtchouk, and R. D. Simon, Cytosine DNA methylation influences drug resistance in Escherichia coli through increased sugE expression, FEMS Microbiology Letters, vol.350, pp.100-106, 2014.

C. Kahramanoglou, Genomics of DNA cytosine methylation in Escherichia coli reveals its role in stationary phase transcription, Nature communications, vol.3, 2012.

J. Casadesus and D. Low, Epigenetic gene regulation in the bacterial world, Microbiol Mol Biol Rev, vol.70, pp.830-856, 2006.

J. Collier, H. H. Mcadams, and L. Shapiro, A DNA methylation ratchet governs progression through a bacterial cell cycle, Proc Natl Acad Sci, vol.104, pp.17111-17116, 2007.

G. Zweiger, G. Marczynski, and L. Shapiro, A Caulobacter DNA methyltransferase that functions only in the predivisional cell, J Mol Biol, vol.235, pp.472-485, 1994.

C. Stephens, A. Reisenauer, R. Wright, and L. Shapiro, A cell cycle-regulated bacterial DNA methyltransferase is essential for viability, Proc Natl Acad Sci, vol.93, pp.1210-1214, 1996.

D. Gonzalez, J. B. Kozdon, H. H. Mcadams, L. Shapiro, and J. Collier, The functions of DNA methylation by CcrM in Caulobacter crescentus: a global approach, Nucleic Acids Res, vol.42, pp.3720-3735, 2014.

M. J. Blow, The Epigenomic Landscape of Prokaryotes, Plos Genet, vol.12, 2016.

P. Chen, Comparative Genomics Reveals the Diversity of Restriction-Modification Systems and DNA Methylation Sites in Listeria monocytogenes, Appl Environ Microbiol, vol.83, 2017.

D. Availability, The datasets generated and analysed during the current study are

, SCIeNTIFIC RePORTs |, vol.8, 2018.

A. G. Davis-richardson, Integrating DNA Methylation and Gene Expression Data in the Development of the SoybeanBradyrhizobium N2-Fixing Symbiosis, Frontiers in microbiology, vol.7, 2016.

I. Erill, Comparative Analysis of Ralstonia solanacearum Methylomes. Frontiers in plant science 8, vol.504, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01602628

G. Fang, Genome-wide mapping of methylated adenine residues in pathogenic Escherichia coli using single-molecule real-time sequencing, Nature biotechnology, vol.30, pp.1232-1239, 2012.

W. C. Lee, The complete methylome of Helicobacter pylori UM032, BMC Genomics, vol.16, 2015.

K. T. Mou, A comparative analysis of methylome profiles of Campylobacter jejuni sheep abortion isolate and gastroenteric strains using PacBio data, Frontiers in microbiology, vol.5, 2014.

L. Zhu, Precision methylome characterization of Mycobacterium tuberculosis complex (MTBC) using PacBio single-molecule real-time (SMRT) technology, Nucleic Acids Res, vol.44, pp.730-743, 2016.
DOI : 10.1093/nar/gkv1498

URL : https://doi.org/10.1093/nar/gkv1498

H. J. Seong, Using Single-Molecule Real-Time Sequencing. The plant pathology journal 32, pp.500-507, 2016.

A. E. Zautner, SMRT sequencing of the Campylobacter coli BfR-CA-9557 genome sequence reveals unique methylation motifs, BMC Genomics, vol.16, 1088.

C. Nielsen-leroux, S. Gaudriault, N. Ramarao, D. Lereclus, and A. Givaudan, How the insect pathogen bacteria Bacillus thuringiensis and Xenorhabdus/Photorhabdus occupy their hosts, Curr Opin Microbiol, vol.15, p.6, 2012.
URL : https://hal.archives-ouvertes.fr/hal-01004177

V. S. Somvanshi, A single promoter inversion switches Photorhabdus between pathogenic and mutualistic states, Science, vol.337, pp.88-93, 2012.
DOI : 10.1126/science.1216641

URL : http://europepmc.org/articles/pmc4006969?pdf=render

A. Mouammine, An antimicrobial peptide-resistant minor subpopulation of Photorhabdus luminescens is responsible for virulence, Scientific reports, vol.7, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01658679

E. Duchaud, The genome sequence of the entomopathogenic bacterium Photorhabdus luminescens, Nature biotechnology, vol.21, pp.1307-1313, 2003.
DOI : 10.1038/nbt886

URL : http://www.nature.com/nbt/journal/v21/n11/pdf/nbt886.pdf

J. C. Ogier, Units of plasticity in bacterial genomes: new insight from the comparative genomics of two bacteria interacting with invertebrates, Photorhabdus and Xenorhabdus, BMC Genomics, vol.11, 2010.

F. Khan, A putative mobile genetic element carrying a novel type IIF restriction-modification system (PluTI), Nucleic Acids Res, vol.38, pp.3019-3030, 2010.
DOI : 10.1093/nar/gkp1221

URL : https://academic.oup.com/nar/article-pdf/38/9/3019/16771000/gkp1221.pdf

S. Doberenz, Identification of a Pseudomonas aeruginosa PAO1 DNA Methyltransferase, Its Targets, and Physiological Roles, 2017.
DOI : 10.1128/mbio.02312-16

URL : http://mbio.asm.org/content/8/1/e02312-16.full.pdf

N. R. Cohen, A role for the bacterial GATC methylome in antibiotic stress survival, Nature genetics, vol.48, pp.581-586, 2016.

L. L. Westphal, P. Sauvey, M. M. Champion, I. M. Ehrenreich, and S. E. Finkel, Genomewide Dam Methylation in Escherichia coli during Long-Term Stationary Phase. mSystems 1, 2016.
DOI : 10.1128/msystems.00130-16

URL : https://msystems.asm.org/content/1/6/e00130-16.full.pdf

B. M. Forde, Lineage-Specific Methyltransferases Define the Methylome of the Globally Disseminated Escherichia coli ST131 Clone, vol.6, pp.1602-01615, 2015.

J. G. Powers, Efficient and accurate whole genome assembly and methylome profiling of E. coli, BMC Genomics, vol.14, 2013.
DOI : 10.1186/1471-2164-14-675

URL : https://bmcgenomics.biomedcentral.com/track/pdf/10.1186/1471-2164-14-675?site=bmcgenomics.biomedcentral.com

A. Anjum, Phase variation of a Type IIG restriction-modification enzyme alters site-specific methylation patterns and gene expression in Campylobacter jejuni strain NCTC11168, Nucleic Acids Research, vol.44, pp.4581-4594, 2016.

J. M. Atack, A biphasic epigenetic switch controls immunoevasion, virulence and niche adaptation in non-typeable Haemophilus influenzae, Nature communications, vol.6, 2015.
DOI : 10.1038/ncomms8828

URL : http://www.nature.com/articles/ncomms8828.pdf

R. Gorrell and T. Kwok, Molecular Pathogenesis and Signal Transduction by, pp.105-127, 2017.

K. L. Seib, F. E. Jen, A. L. Scott, A. Tan, and M. P. Jennings, Phase variation of DNA methyltransferases and the regulation of virulence and immune evasion in the pathogenic Neisseria, Pathogens and disease, vol.75, 2017.

S. Derzelle, The PhoP-PhoQ two-component regulatory system of Photorhabdus luminescens is essential for virulence in insects, Journal of bacteriology, vol.186, pp.1270-1279, 2004.

S. Ardissone, Cell Cycle Constraints and Environmental Control of Local DNA Hypomethylation in ?-Proteobacteria, Plos Genetics, vol.12, 2016.

T. E. Erova, DNA adenine methyltransferase influences the virulence of Aeromonas hydrophila, Infection and Immunity, vol.74, pp.410-424, 2006.

B. Mayjonade, Extraction of high-molecular-weight genomic DNA for long-read sequencing of single molecules, BioTechniques, vol.61, pp.203-205, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01603946

A. C. Darling, B. Mau, F. R. Blattner, and N. T. Perna, Mauve: multiple alignment of conserved genomic sequence with rearrangements, Genome research, vol.14, pp.1394-1403, 2004.

I. A. Murray, The methylomes of six bacteria, Nucleic Acids Research, vol.40, pp.11450-11462, 2012.

J. Lluch, The Characterization of Novel Tissue Microbiota Using an Optimized 16S Metagenomic Sequencing Pipeline, Plos One, vol.10, 2015.

S. J. Clark, Genome-wide base-resolution mapping of DNA methylation in single cells using single-cell bisulfite sequencing (scBS-seq), Nature protocols, vol.12, pp.534-547, 2017.

F. Krueger and S. R. Andrews, Bismark: a flexible aligner and methylation caller for Bisulfite-Seq applications, Bioinformatics, vol.27, pp.1571-1572, 2011.

P. Machanick and T. L. Bailey, MEME-ChIP: motif analysis of large DNA datasets, Bioinformatics, vol.27, pp.1696-1697, 2011.

P. Sobetzko, DistAMo: A Web-Based Tool to Characterize DNA-Motif Distribution on Bacterial Chromosomes, Frontiers in microbiology, vol.7, 2016.

M. W. Pfaffl, G. W. Horgan, and L. Dempfle, Relative expression software tool (REST) for group-wise comparison and statistical analysis of relative expression results in real-time PCR, Nucleic Acids Res, vol.30, p.36, 2002.