L. Abecia, E. Jimenez, G. Martinez-fernandez, A. I. Martin-garcia, E. Ramosmorales et al., Natural and artificial feeding management before weaning promote different rumen microbial colonization but not differences in gene expression levels at the rumen epithelium of newborn goats, PLoS ONE, vol.12, 2017.

L. Abecia, A. I. Martín-garcía, G. Martínez, C. J. Newbold, Y. et al., Nutritional intervention in early life to manipulate rumen microbial colonization and methane output by kid goats postweaning1, J. Anim. Sci, vol.91, pp.4832-4840, 2013.
DOI : 10.2527/jas.2012-6142

L. Abecia, E. Ramos-morales, G. Martínez-fernandez, A. Arco, A. I. Martíngarcía et al., Feeding management in early life influences microbial colonisation and fermentation in the rumen of newborn goat kids, Anim. Prod. Sci, vol.54, pp.1449-1454, 2014.

L. Abecia, P. G. Toral, A. I. Martin-garcia, G. Martinez, N. W. Tomkins et al., Effect of bromochloromethane on methane emission, rumen fermentation pattern, milk yield, and fatty acid profile in lactating dairy goats, J. Dairy Sci, vol.95, pp.2027-2036, 2012.

F. Abram, E. Gunnigle, and V. Flaherty, Optimisation of protein extraction and 2-DE for metaproteomics of microbial communities from anaerobic wastewater treatment biofilms, Electrophoresis, vol.30, pp.4149-4151, 2009.

A. T. Adai, S. V. Date, S. Wieland, and E. M. Marcotte, LGL: creating a map of protein function with an algorithm for visualizing very large biological networks, J. Mol. Biol, vol.340, pp.179-190, 2004.

J. C. Adams, J. A. Gazaway, M. D. Brailsford, P. A. Hartman, and N. L. Jacobson, Isolation of bacteriophages from the bovine rumen, Experientia, vol.22, pp.717-718, 1966.

M. Aite, M. Chevallier, C. Frioux, C. Trottier, J. Got et al., Traceability, reproducibility and wiki-exploration for "à-lacarte" reconstructions of genome-scale metabolic models, Plos. Comput. Biol, vol.14, p.1006146, 2018.

N. Alexandratos and J. Bruinsma, , 2012.

S. Al-masaudi, A. El-kaoutari, E. Drula, H. Al-mehdar, E. M. Redwan et al., A metagenomics investigation of carbohydrateactive enzymes along the gastrointestinal tract of Saudi sheep, Front. Microbiol, vol.8, p.666, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01595245

G. M. Alugongo, J. Xiao, Z. Wu, S. Li, Y. Wang et al., Review: utilization of yeast of Saccharomyces cerevisiae origin in artificially raised calves, J. Anim. Sci. Biotechnol, vol.8, p.34, 2017.

B. N. Ametaj, Q. Zebeli, F. Saleem, N. Psychogios, M. J. Lewis et al., Metabolomics reveals unhealthy alterations in rumen metabolism with increased proportion of cereal grain in the diet of dairy cows, Metabolism, vol.6, pp.583-594, 2010.

M. Ø. Arntzen, A. Várnai, R. I. Mackie, V. G. Eljsink, and P. B. Pope, Outer membrane vesicles from Fibrobacter succinogenes S85 contain an array of carbohydrate-active enzymes with versatile polysaccharide-degrading capacity, Environ. Microbiol, vol.19, pp.2701-2714, 2017.

V. M. Artegoitia, A. P. Foote, R. M. Lewis, and H. C. Freetly, Rumen fluid metabolomics analysis associated with feed efficiency on crossbred steers, Sci. Rep, vol.7, p.2864, 2017.

K. P. Aßhauer, B. Wemheuer, R. Daniel, M. , and P. , Tax4Fun: predicting functional profiles from metagenomic 16S rRNA data, Bioinformatics, vol.31, pp.2882-2884, 2015.

M. D. Auffret, R. J. Dewhurst, C. A. Duthie, J. A. Rooke, J. Wallace et al., The rumen microbiome as a reservoir of antimicrobial resistance and pathogenicity genes is directly affected by diet in beef cattle, vol.5, p.159, 2017.

M. D. Auffret, R. Stewart, R. J. Dewhurst, C. A. Duthie, J. A. Rooke et al., Identification, comparison, and validation of robust rumen microbial biomarkers for methane emissions using diverse Bos Taurus breeds and basal diets, Front. Microbiol, vol.8, p.2642, 2017.

A. Bach, S. Calsamiglia, and M. D. Stern, Nitrogen metabolism in the rumen, J. Dairy Sci, vol.88, pp.73133-73140, 2005.

A. Bannink, H. J. Van-lingen, J. L. Ellis, J. France, and J. Dijkstra, The contribution of mathematical modeling to understanding dynamic aspects of rumen metabolism, Front. Microbiol, vol.7, p.1820, 2016.

A. Barberan, S. T. Bates, E. O. Casamayor, and N. Fierer, Using network analysis to explore co-occurrence patterns in soil microbial communities, ISME J, vol.6, pp.343-351, 2012.

C. Baroukh, R. Muñoz-tamayo, J. Steyer, B. , and O. , DRUM: A new framework for metabolic modeling under non-balanced growth. Application to the carbon metabolism of unicellular microalgae, PLoS ONE, vol.9, p.104499, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01123224

C. W. Beitel, L. Froenicke, J. M. Lang, I. F. Korf, R. W. Michelmore et al., Strain-and plasmid-level deconvolution of a synthetic metagenome by sequencing proximity ligation products, PeerJ, vol.2, p.415, 2014.

A. Belanche, G. De-la-fuente, and C. J. Newbold, Study of methanogen communities associated with different rumen protozoal populations, FEMS Microbiol. Ecol, vol.90, pp.663-677, 2014.

A. Belanche, M. Doreau, J. E. Edwards, J. M. Moorby, E. Pinloche et al., Shifts in the rumen microbiota due to the type of carbohydrate and level of protein ingested by dairy cattle are associated with changes in rumen fermentation, J. Nutr, vol.142, pp.1684-1692, 2012.

A. Belanche, A. Kingston-smith, and C. J. Newbold, An integrated multiomics approach reveals the effects of supplementing grass or grass hay with vitamin E on the rumen microbiome and its function, Front. Microbiol, vol.7, p.905, 2016.

A. Belanche, C. J. Newbold, W. Lin, P. R. Stevens, K. et al., A systems biology approach reveals differences in the dynamics of colonization and degradation of grass vs. hay by rumen microbes with minor effects of vitamin E supplementation, Front. Microbiol, vol.8, p.1456, 2017.

D. Benndorf, C. Vogt, N. Jehmlich, Y. Schmidt, H. Thomas et al., Improving protein extraction and separation methods for investigating the metaproteome of anaerobic benzene communities within sediments, Biodegradation, vol.20, pp.737-750, 2009.

G. T. Bergmann, Microbial community composition along the digestive tract in forage-and grain-fed bison, BMC Vet. Rese, vol.13, p.253, 2017.

D. P. Berry and J. J. Crowley, Residual intake and body weight gain: a new measure of efficiency in growing cattle, J. Anim. Sci, vol.90, pp.109-115, 2012.

D. Bhattacharya, D. C. Price, C. Bicep, E. Bapteste, M. Sarwade et al., Identification of a marine cyanophage in a protist single-cell metagenome assembly, J. Phycol, vol.49, pp.207-212, 2013.
URL : https://hal.archives-ouvertes.fr/hal-01544797

M. B. Biggs, G. L. Medlock, G. L. Kolling, and J. A. Papin, Metabolic network modeling of microbial communities, Wiley interdisciplinary reviews. Sys. Biol. Med, vol.7, pp.317-334, 2015.

L. Bittner, S. Halary, C. Payri, C. Cruaud, B. De-reviers et al., Some considerations for analyzing biodiversity using integrative metagenomics and gene networks, Biol. Direct, vol.5, p.47, 2010.

T. Boeckx, A. Winters, K. J. Webb, K. , and A. H. , Detection of potential chloroplastic substrates for polyphenol oxidase suggests a role in undamaged leaves, Front. Plant. Sci, vol.8, p.237, 2017.

G. A. Broderick, Desirable characteristics of forage legumes for improving protein utilization in ruminants, J. Anim. Sci, vol.73, pp.2760-2773, 1995.

G. A. Broderick and S. M. Reynal, Effect of source of rumen-degraded protein on production and ruminal metabolism in lactating dairy cows, J. Dairy Sci, vol.92, pp.2822-2834, 2009.

J. G. Bundy, M. P. Davey, and M. R. Viant, Environmental metabolomics: a critical review and future perspectives, Metabolism, vol.5, p.3, 2009.

S. Calsamiglia, M. Busquet, P. Cardozo, L. Castillejos, and A. Ferret, Invited review: essential oils as modifiers of rumen microbial fermentation, J. Dairy Sci, vol.90, pp.2580-2595, 2007.

C. A. Carberry, S. M. Waters, D. A. Kenny, and C. J. Creevey, Rumen methanogenic genotypes differ in abundance according to host residual feed intake phenotype and diet type, Environ. Microbiol, vol.80, p.2039, 2014.

R. Caspi, R. Billington, L. Ferrer, H. Foerster, C. A. Fulcher et al., The MetaCyc database of metabolic pathways and enzymes and the BioCyc collection of pathway/genome databases, Nuc. Acid. Res, vol.44, 2016.

X. B. Chen, F. D. Hovell, and E. R. Orskov, Excretion of purine derivatives by ruminants: recycling of allantoin into the rumen via saliva and its fate in the gut, Br. J. Nutr, vol.63, pp.197-205, 1990.

K. Cheng, C. , and J. W. , Adherent rumen bacteria-their role in the digestion of plant material, urea and epithelial cells, Digestive Physiology and Metabolism in Ruminants: Proceedings of the 5th International Symposium on Ruminant Physiology, held at Clermont-Ferrand, on 3rd?7th September, pp.227-250, 1979.

K. J. Cheng, R. P. Mccowan, C. , and J. W. , Adherent epithelial bacteria in ruminants and their roles in digestive tract function, Am. J. Clin. Nutr, vol.32, pp.139-148, 1979.

Y. F. Cheng, S. Y. Mao, J. X. Liu, and W. Y. Zhu, Molecular diversity analysis of rumen methanogenic archaea from goat in eastern China by DGGE methods using different primer pairs, Lett. Appl. Microbiol, vol.48, pp.585-592, 2009.

K. Chourey, J. Jansson, N. Verberkmoes, M. Shah, K. L. Chavarria et al., Direct cellular lysis/protein extraction protocol for soil metaproteomics, J. Proteome Res, vol.9, pp.6615-6622, 2010.

D. C. Church, The Ruminant Animal, Digestive Physiology and Nutrition, 1988.

S. Comtet-marre, F. Chaucheyras-durand, O. Bouzid, P. Mosoni, A. R. Bayat et al., FibroChip, a functional DNA microarray to monitor cellulolytic and hemicellulolytic activities of rumen microbiota, Front. Microbiol, vol.9, p.215, 2018.

S. Comtet-marre, N. Parisot, P. Lepercq, F. Chaucheyras-durand, P. Mosoni et al., Metatranscriptomics reveals the active bacterial and eukaryotic fibrolytic communities in the rumen of dairy cow fed a mixed diet, Front. Microbiol, vol.8, p.67, 2017.

S. Couvreur, C. Hurtaud, C. Lopez, L. Delaby, and J. Peyraud, The linear relationship between the proportion of fresh grass in the cow diet, milk fatty acid composition, and butter properties, J. Dairy Sci, vol.89, pp.1956-1969, 2006.
URL : https://hal.archives-ouvertes.fr/hal-00490223

G. Csárdi, A. Franks, D. S. Choi, E. M. Airoldi, and D. A. Drummond, Accounting for experimental noise reveals that mRNA levels, amplified by posttranscriptional processes, largely determine steady-state protein levels in yeast, PLoS Genet, vol.11, p.1005206, 2015.

X. Dai, Y. Tian, J. Li, X. Su, X. Wang et al., Metatranscriptomic analyses of plant cell wall polysaccharide degradation by microorganisms in the cow rumen, Appl. Environ. Microbiol, vol.81, pp.1375-1386, 2015.

D. R. Davies, M. K. Theodorou, M. I. Lawrence, and A. P. Trinci, Distribution of anaerobic fungi in the digestive tract of cattle and their survival in faeces, J. Gen. Microbiol, vol.139, pp.1395-1400, 1993.

T. De-mulder, N. Peiren, L. Vandaele, T. Ruttink, S. De-campeneere et al., Impact of breed on the rumen microbial community composition and methane emission of Holstein Friesian and Belgian Blue heifers, Livestock Sci, vol.207, pp.38-44, 2018.

D. Oliveira, M. N. Jewell, K. A. Freitas, F. S. Benjamin, L. A. Tótola et al., Characterizing the microbiota across the gastrointestinal tract of a Brazilian Nelore steer, Vet. Microbiol, vol.164, pp.307-314, 2013.

M. Desnoyers, S. Giger-reverdin, G. Bertin, C. Duvaux-ponter, and D. Sauvant, Meta-analysis of the influence of Saccharomyces cerevisiae supplementation on ruminal parameters and milk production of ruminants, J. Dairy Sci, vol.92, pp.1620-1632, 2009.
URL : https://hal.archives-ouvertes.fr/hal-01173469

S. Deusch and J. Seifert, Catching the tip of the iceberg-evaluation of sample preparation protocols for metaproteomic studies of the rumen microbiota, Proteomics, vol.15, pp.3590-3595, 2015.

R. J. Dewhurst, A. M. Mitton, N. W. Offer, T. , and C. , Effects of the composition of grass silages on milk production and nitrogen utilization by dairy cows, Anim. Sci, vol.62, pp.25-34, 1996.

A. Dey, J. P. Sehgal, A. K. Puniya, and K. Singh, Influence of an anaerobic fungal culture (Orpinomyces sp.) administration on growth rate, ruminal fermentation and nutrient digestion in calves, Asian-Australas. J. Anim. Sci, vol.17, pp.820-824, 2004.

D. Prado, R. M. Porto, C. Nunes, E. De-aguiar, C. L. Pilau et al., Metabolomics and agriculture: what can be done? mSystems, vol.3, pp.156-00117, 2018.

S. E. Dowd, T. R. Callaway, R. D. Wolcott, Y. Sun, T. Mckeehan et al., Evaluation of the bacterial diversity in the feces of cattle using 16S rDNA bacterial tag-encoded FLX amplicon pyrosequencing (bTEFAP), 2008.

, BMC Microbiol, vol.8, p.125

E. C. Duin, T. Wagner, S. Shima, D. Prakash, B. Cronin et al., Mode of action uncovered for the specific reduction of methane emissions from ruminants by the small molecule 3-nitrooxypropanol, Proc. Nat. Acad. Sci. U.S.A, vol.113, pp.6172-6177, 2016.

L. Durso, G. Harhay, T. Smith, J. Bono, T. Desantis et al., , 2010.

, Animal-to-animal variation in fecal microbial diversity among beef cattle, Appl. Environ. Microbiol, vol.76

L. Durso, J. Wells, G. Harhay, W. Rice, L. Kuehn et al., Comparison of bacterial communities in faeces of beef cattle fed diets containing corn and wet distillers' grain with solubles, Lett. Appl.Microbiol, vol.55, pp.109-114, 2012.

J. E. Edwards, R. J. Forster, T. M. Callaghan, V. Dollhofer, S. S. Dagar et al., PCR and omics based techniques to study the diversity, ecology and biology of anaerobic fungi: Insights, challenges and opportunities, Front. Microbiol, vol.8, p.1657, 2017.

J. E. Edwards, S. A. Huws, E. J. Kim, K. , and A. H. , Characterization of the dynamics of initial bacterial colonization of nonconserved forage in the bovine rumen, FEMS Microbiol. Ecol, vol.62, pp.323-335, 2007.

J. E. Edwards, S. A. Huws, E. J. Kim, M. R. Lee, A. H. Kingston-smith et al., Advances in microbial ecosystem concepts and their consequences for ruminant agriculture, Animal, vol.2, pp.653-660, 2008.

C. O. Elekwachi, Z. Wang, X. Wu, A. Rabee, and R. J. Forster, Total rRNA-seq analysis gives insight into bacterial, fungal, protozoal and archaeal communities in the rumen using an optimized RNA isolation method, Front. Microbiol, vol.8, p.1814, 2017.

J. L. Ellis, J. Dijkstra, E. Kebreab, A. Bannink, N. E. Odongo et al., Aspects of rumen microbiology central to mechanistic modelling of methane production in cattle, J. Agri. Sci, vol.146, pp.213-233, 2008.

K. Faust, R. , and J. , Microbial interactions: from networks to models, Nat. Rev. Microbiol, vol.10, pp.538-550, 2012.

A. M. Feist, M. J. Herrgård, I. Thiele, J. L. Reed, and B. Ø. Palsson, Reconstruction of biochemical networks in microbial organisms, Nat. Rev. Microbiol, vol.7, pp.129-143, 2009.

S. C. Fernando, H. T. Purvis, F. Z. Najar, L. O. Sukharnikov, C. R. Krehbiel et al., Rumen microbial population dynamics during adaptation to a high-grain diet, Appl. Environ. Microbiol, vol.76, pp.7482-7490, 2010.

M. Fondi and R. Fani, The horizontal flow of the plasmid resistome: clues from inter-generic similarity networks, Environ. Microbiol, vol.12, pp.3228-3242, 2010.

J. M. Fouhse, L. Smiegielski, M. Tuplin, L. L. Guan, and B. P. Willing, Host immune selection of rumen bacteria through salivary secretory, IgA. Front. Microbiol, vol.8, p.848, 2017.

J. C. Frey, A. N. Pell, R. Berthiaume, H. Lapierre, S. Lee et al., Comparative studies of microbial populations in the rumen, duodenum, ileum and faeces of lactating dairy cows, J. Appl. Microbiol, vol.108, 1982.

J. Friedman, A. , and E. J. , Inferring correlation networks from genomic survey data, PLoS Comput. Biol, vol.8, p.1002687, 2012.

N. Friedman, J. Elie, and M. Itzhak, Compositional and functional dynamics of the bovine rumen methanogenic community across different developmental stages, Environ. Microbiol, vol.19, pp.3365-3373, 2017.

P. J. Gerber, H. Steinfeld, B. Henderson, A. Mottet, C. Opio et al., Tackling Climate Change Through Livestock-A Global Assessment of Emissions and Mitigation Opportunities, 2013.

R. A. Gilbert, W. J. Kelly, E. Altermann, S. C. Leahy, C. Minchin et al., Toward understanding phage: host interactions in the rumen; complete genome sequences of lytic phages infecting rumen bacteria, Front. Microbiol, vol.8, p.2340, 2017.

R. A. Gilbert and A. V. Klieve, Ruminal viruses (bacteriophages, archaeaphages), " in Rumen Microbiology: From Evolution to Revolution, pp.121-141, 2015.

S. A. Goldansaz, A. C. Guo, T. Sajed, M. A. Steele, G. S. Plastow et al., Livestock metabolomics and the livestock metabolome: A systematic review, PLoS ONE, vol.12, 2017.
DOI : 10.1371/journal.pone.0177675

URL : https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0177675&type=printable

H. M. Golder, J. M. Thomson, S. E. Denman, C. S. Mcsweeney, L. et al., Genetic markers are associated with the ruminal microbiome and metabolome in grain and sugar challenged dairy heifers, Front. Genet, vol.9, p.62, 2018.
DOI : 10.3389/fgene.2018.00062

URL : https://www.frontiersin.org/articles/10.3389/fgene.2018.00062/pdf

L. González, X. Manteca, S. Calsamiglia, K. Schwartzkopf-genswein, and A. Ferret, Ruminal acidosis in feedlot cattle: Interplay between feed ingredients, rumen function and feeding behavior (a review), Anim. Feed. Sci. Technol, vol.172, pp.66-79, 2012.

J. K. Goodrich, E. R. Davenport, J. L. Waters, A. G. Clark, and R. E. Ley, Cross-species comparisons of host genetic associations with the microbiome, Science, vol.352, pp.532-535, 2016.

J. P. Goopy, A. Donaldson, R. Hegarty, P. E. Vercoe, F. Haynes et al., Low-methane yield sheep have smaller rumens and shorter rumen retention time, Brit. J. Nutr, vol.111, pp.578-585, 2014.
DOI : 10.1017/s0007114513002936

URL : https://www.cambridge.org/core/services/aop-cambridge-core/content/view/3ADE1226146E74E875FAF5C81F6A63FE/S0007114513002936a.pdf/div-class-title-low-methane-yield-sheep-have-smaller-rumens-and-shorter-rumen-retention-time-div.pdf

G. L. Gordon and M. W. Phillips, The role of anaerobic gut fungi in ruminants, Nutr. Res. Rev, vol.11, pp.133-168, 1998.

D. Greenbaum, C. Colangelo, K. Williams, G. , and M. , Comparing protein abundance and mRNA expression levels on a genomic scale, Genome. Biol, vol.4, p.117, 2003.

P. Gregorini, P. C. Beukes, D. Dalley, and A. J. Romera, Development of an improved representation of the rumen igesta outflow in a mechanistic an dynamic model of a dairy cow, Molly. Ecol. Model, vol.313, pp.293-306, 2016.

D. Gruby and H. M. Delafond, Recherches ser des animalcules se de veloppant en grand nombre dans l'estomac et dans les intestins, pedant la digestion des animaux herbivores et carnivores, Compt. Rend. Acad. Sci, vol.17, pp.1304-1308, 1843.

R. J. Gruninger, A. K. Puniya, T. M. Callaghan, J. E. Edwards, N. Youssef et al., Anaerobic fungi (phylum Neocallimastigomycota): advances in understanding their taxonomy, life cycle, ecology, role and biotechnological potential, FEMS Microbiol. Ecol, vol.90, pp.1-17, 2014.
DOI : 10.1111/1574-6941.12383

URL : https://academic.oup.com/femsec/article-pdf/90/1/1/18158906/90-1-1.pdf

C. Gutzeit, G. Magri, C. , and A. , Intestinal IgA production and its role in host-microbe interaction, Immun. Rev, vol.260, pp.76-85, 2014.
DOI : 10.1111/imr.12189

URL : http://europepmc.org/articles/pmc4174397?pdf=render

S. Halary, J. O. Mcinerney, P. Lopez, and E. Bapteste, EGN: a wizard for construction of gene and genome similarity networks, BMC Evol. Biol, vol.13, p.146, 2013.
URL : https://hal.archives-ouvertes.fr/hal-01544799

E. H. Hart, C. J. Creevey, T. Hitch, K. , and A. H. , Metaproteomics of rumen microbiota indicates niche compartmentalisation and functional dominance in a limited number of metabolic pathways between abundant bacteria, Sci. Rep, vol.8, p.10504, 2018.

E. H. Hart, L. A. Onime, T. E. Davies, R. M. Morphew, K. et al., The effects of PPO activity on the proteome of ingested red clover and implications for improving the nutrition of grazing cattle, J. Proteomics, vol.141, pp.67-76, 2016.

J. He, L. Yi, L. Hai, L. Ming, W. Gao et al., Characterizing the bacterial microbiota in different gastrointestinal tract segments of the Bactrian camel, Sci. Rep, vol.8, p.654, 2018.

R. S. Hegarty, Reducing rumen methane emissions through elimination of rumen protozoa, Aus. J. Agri. Res, vol.50, pp.1321-1328, 1999.
DOI : 10.1071/ar99008

G. Henderson, F. Cox, S. Ganesh, A. Jonker, W. Young et al., Rumen microbial community composition varies with diet and host, but a core microbiome is found across a wide geographical range, Sci. Rep, vol.5, p.14567, 2015.
DOI : 10.1038/srep14567

URL : https://www.nature.com/articles/srep14567.pdf

C. S. Henry, M. Dejongh, A. A. Best, P. M. Frybarger, B. Linsay et al., High-throughput generation, optimization and analysis of genomescale metabolic models, Nat. Biotech, vol.28, pp.977-922, 2010.

E. Hernandez-sanabria, L. A. Goonewardene, Z. Wang, O. N. Durunna, S. S. Moore et al., Impact of feed efficiency and diet on adaptive variations in the bacterial community in the rumen fluid of cattle, Appl. Environ. Microbiol, vol.78, pp.1203-1214, 2012.

M. Hess, A. Sczyrba, R. Egan, T. W. Kim, H. Chokhawala et al., Metagenomic discovery of biomass-degrading genes and genomes from cow rumen, Science, vol.331, pp.463-467, 2011.
DOI : 10.1126/science.1200387

A. N. Hristov, J. Oh, F. Giallongo, T. W. Frederick, M. T. Harper et al., An inhibitor persistently decreased enteric methane emission from dairy cows with no negative effect on milk production, Proc. Nat. Acad. Sci.U.S.A, vol.112, pp.10663-10668, 2015.

A. N. Hristov, J. Oh, C. Lee, R. Meinen, F. Montes et al., , 2013.

, Mitigation of greenhouse gas emissions in livestock production. A review of options for non-CO2 emissions

X. D. Huang, G. Martinez-fernandez, J. Padmanabha, R. Long, S. E. Denman et al., Methanogen diversity in indigenous and introduced ruminant species on the Tibetan plateau, Archaea, p.5916067, 2016.

P. Huhtanen, E. H. Cabezas-garcia, S. Utsumi, and S. Zimmerman, Nordic dairy cow model Karoline in predicting methane emissions: 1. Model description and sensitivity analysis, Livestock Sci, vol.178, pp.71-80, 2015.

R. E. Hungate, The Rumen and its Microbes, 1966.

S. A. Huws, J. E. Edwards, C. J. Creevey, R. Stevens, P. Lin et al., Temporal dynamics of metabolically active rumen bacteria colonizing fresh perennial ryegrass, FEMS Microbiol. Ecol, vol.92, p.137, 2016.

S. A. Huws, J. E. Edwards, E. J. Kim, and N. D. Scollan, Specificity and sensitivity of eubacterial primers utilized for molecular profiling of bacteria within complex microbial ecosystems, J. Microbiol. Meth, vol.70, pp.565-569, 2007.

S. A. Huws, E. J. Kim, A. H. Kingston-smith, M. R. Lee, S. M. Muetzel et al., Rumen protozoa are rich in polyunsaturated fatty acids due to the ingestion of chloroplasts, FEMS Microbiol. Ecol, vol.69, pp.461-471, 2009.

S. A. Huws, M. R. Lee, A. H. Kingston-smith, E. J. Kim, M. B. Scott et al., Ruminal protozoal contribution to the duodenal flow of fatty acids following feeding of steers on forages differing in chloroplast content, Brit. J. Nutr, vol.108, pp.2207-2214, 2012.

S. A. Huws, M. R. Lee, S. M. Muetzel, M. B. Scott, R. J. Wallace et al., Forage type and fish oil cause shifts in rumen bacterial diversity, FEMS Microbiol. Ecol, vol.73, pp.396-407, 2010.

S. A. Huws, O. L. Mayorga, M. K. Theodorou, E. J. Kim, A. Cookson et al., Differential colonization of plant parts by the rumen microbiota is likely to be due to different forage chemistries, J. Microb. Biochem. Technol, vol.6, pp.80-86, 2014.

S. A. Huws, O. L. Mayorga, M. K. Theodorou, L. A. Onime, E. J. Kim et al., Successional colonization of perennial ryegrass by rumen bacteria, Lett. Appl. Microbiol, vol.56, pp.186-196, 2013.

N. T. Ingolia, S. Ghaemmaghami, J. R. Newman, and J. S. Weissman, , 2009.

. Genome-wide, Analysis in vivo of translation with nucleotide resolution using ribosome profiling, Science, vol.324, pp.218-223

, Guidelines for National Greenhouse Inventories, 2006.

M. W. Iqbal, Q. Zhang, Y. Yang, L. Li, C. Zou et al., Comparative study of rumen fermentation and microbial community differences between water buffalo and Jersey cows under similar feeding conditions, J. Appl. Anim. Res, vol.46, pp.740-748, 2018.

S. L. Ishaq, O. Alzahal, N. Wlker, and B. Mcbride, An investigation into rumen fungal and protozoal diversity in the three rumen fractions, during high fiber or grain-induced sub-acute acidosis conditions, with or without active dry yeast supplementation, Front. Microbiol, vol.8, p.1943, 2017.

S. L. Ishaq, C. J. Kim, D. Reis, W. , and A. D. , Fibrolytic bacteria isolated from the rumen of North Amerian moose (Alces alces) and their use as a probiotic in neonatal lambs, PLoS ONE, vol.10, 2015.

S. L. Ishaq, W. , and A. D. , Design and validation of four new primers for next-generation sequencing to target the 18S rRNA genes of gastrointestinal ciliate protozoa, Appl Environ. Microbiol, vol.80, pp.5515-5521, 2014.

E. Jami, A. Israel, A. Kotser, and I. Mizrahi, Exploring the bovine rumen bacterial community from birth to adulthood, ISMEJ, vol.7, p.1069, 2013.

E. Jami, B. A. White, and I. Mizrahi, Potential role of the bovine rumen microbiome in modulating milk composition and feed efficiency, PLoS ONE, vol.9, p.85423, 2014.

P. H. Janssen, Influence of hydrogen on rumen methane formation and fermentation balances through microbial growth kinetics and fermentation thermodynamics, Anim. Feed. Sci. Technol, vol.160, pp.1-22, 2010.

P. H. Janssen, K. , and M. , Structure of the archaeal community of the rumen, Appl. Environ. Microbiol, vol.74, pp.3619-2066, 2008.

A. Jayanegara, K. A. Sarwono, M. Kondo, H. Matsui, M. Ridla et al., Use of 3-nitrooxypropanol as feed additive for mitigating enteric methane emissions from ruminants: a meta-analysis, Ital. J. Anim. Sci, vol.17, pp.650-656, 2018.

J. Jeyanathan, C. Martin, and D. P. Morgavi, The use of direct-fed microbials for mitigation of ruminant methane emissions: a review, Animal, vol.8, pp.250-261, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01137190

D. Jin, S. Zhao, N. Zheng, D. Bu, Y. Beckers et al., Differences in ureolytic bacterial composition between the rumen digesta and rumen wall based on ureC gene classification, Front. Microbiol, vol.8, p.385, 2017.

K. A. Johnson, J. , and D. E. , Methane emissions from cattle, J. Anim. Sci, vol.73, pp.2483-2492, 1995.

R. J. Jones and R. G. Megarrity, Successful transfer of DHP-degrading bacteria from Hawaiian goats to Australian ruminants to overcome toxicity of Leucaena, Aus. Vet. J, vol.63, pp.259-262, 1986.

S. Jun, M. S. Robeson, L. J. Hauser, C. W. Schadt, and A. A. Gorin, PanFP: pangenome-based functional profiles for microbial communities, BMC Res. Notes, vol.8, p.479, 2015.

A. Kalderimis, R. Lyne, D. Butano, S. Contrino, M. Lyne et al., InterMine: extensive web services for modern biology, Nuc. Acid. Res, vol.42, pp.468-472, 2014.

J. Kamke, S. Kittelmann, P. Soni, Y. Li, M. Tavendale et al., Rumen metagenome and metatranscriptome analyses of low methane yield sheep reveals a Sharpea-enriched microbiome characterised by lactic acid formation and utilisation, vol.4, p.56, 2016.

M. Kanehisa, M. Furumichi, M. Tanabe, Y. Sato, and K. Morishima, KEGG: new perspectives on genomes, pathways, diseases and drugs, Nuc. Acid. Res, vol.45, 2017.

B. Karisa, S. Moore, P. , and G. , Analysis of biological networks and biological pathways associated with residual feed intake in beef cattle, Anim. Sci. J, vol.85, pp.374-387, 2014.

N. Kenters, G. Henderson, J. Jeyanathan, S. Kittelmann, and P. H. Janssen, Isolation of previously uncultured rumen bacteria by dilution to extinction using a new liquid culture medium, J. Microbiol. Meth, vol.84, pp.52-60, 2011.

J. Keunen, J. Plaizier, I. Kyriazakis, T. Duffield, T. Widowski et al., Effects of subacute ruminal acidosis on free-choice intake of sodium bicarbonate in lactating dairy cows, J. Dairy. Sci, vol.86, pp.954-957, 2003.

M. Kim, M. Morrison, Y. , and Z. , Evaluation of dfferent partial 16S rRNA gene sequence regions for phylogenetic analysis of microbiomes, J. Microbiol. Meth, vol.84, pp.81-87, 2011.

A. H. Kingston-smith, T. E. Davies, J. E. Edwards, and M. K. Theodorou, From plants to animals; the role of plant cell death in ruminant herbivores, J. Exp. Bot, vol.59, pp.521-532, 2008.

A. H. Kingston-smith, T. E. Davies, R. Stevens, P. Mur, and L. A. , Comparative metabolite fingerprinting of the rumen system during colonisation of three forage grass (Lolium perenne L.) varieties, PLoS ONE, vol.8, 2013.

A. H. Kingston-smith, J. E. Edwards, S. A. Huws, E. J. Kim, A. et al., Plant-based strategies towards minimising 'livestock's long shadow, Proc. Nutr. Soc, vol.69, pp.613-620, 2010.

S. Kittelmann and P. H. Janssen, Characterization of rumen ciliate community composition in domestic sheep, deer, and cattle, feeding on varying diets, by means of PCR-DGGE and clone libraries, FEMS Microbiol. Ecol, vol.75, pp.468-481, 2011.

E. S. Klaassens, W. M. De-vos, and E. E. Vaughan, Metaproteomics approach to study the functionality of the microbiota in the human infant gastrointestinal tract, Appl. Environ. Microbiol, vol.73, pp.1388-1392, 2007.

T. Kloesges, O. Popa, W. Martin, and T. Dagan, Networks of gene sharing among 329 proteobacterial genomes reveal differences in lateral gene transfer frequency at different phylogenetic depths, Mol. Biol. Evol, vol.28, pp.1057-1074, 2011.

T. Knight, R. Ronimus, D. Dey, C. Tootill, G. Naylor et al., Chloroform decreases rumen methanogenesis and methanogen populations without altering rumen function in cattle, Anim. Feed Sci. Technol, vol.166, pp.101-112, 2011.

C. Koetschan, S. Kittelmann, J. Lu, D. Al-halbouni, G. N. Jarvis et al., Internal transcribed spacer 1 secondary structure analysis reveals a common core throughout the anaerobic fungi (Neocallimastigomycota), PLoS ONE, vol.9, 2014.

H. Koo, N. Mojib, J. A. Hakim, I. Hawes, Y. Tanabe et al., Microbial communities and their predicted metabolic functions in growth laminae of a unique large conical mat from Lake Untersee, East Antarctica. Front. Microbiol, vol.8, p.1347, 2017.

B. Koskella and M. A. Brockhurst, Bacteria-phage coevolution as a driver of ecological and evolutionary processes in microbial communities, FEMS Microbiol. Rev, vol.38, pp.916-931, 2014.

M. G. Langille, J. Zaneveld, J. G. Caporaso, D. Mcdonald, D. Knights et al., Predictive functional profiling of microbial communities using 16S rRNA marker gene sequences, Nat. Biotechnol, vol.31, pp.814-821, 2013.

S. C. Leahy, W. J. Kelly, E. Altermann, R. S. Ronimus, C. J. Yeoman et al., The genome sequence of the rumen methanogen Methanobrevibacter ruminantium reveals new possibilities for controlling ruminant methane emissions, PLoS ONE, vol.5, p.8926, 2010.

M. R. Lee, Forage polyphenol oxidase and ruminant livestock nutrition, Front. Plant Sci, vol.5, p.694, 2014.

M. R. Lee, A. L. Winters, N. D. Scollan, R. J. Dewhurst, M. K. Theodorou et al., Plant-mediated lipolysis and proteolysis in red clover with different polyphenol oxidase activities, J. Sci. Food Agri, vol.84, pp.1639-1645, 2004.

S. S. Lee, J. K. Ha, and K. J. Cheng, Influence of an anaerobic fungal culture administration on in vivo ruminal fermentation and nutrient digestion, Anim. Feed Sci. Technol, vol.88, pp.201-217, 2000.

W. P. Lee and W. S. Tzou, Computational methods for discovering gene networks from expression data, Brief. Bioinform, vol.10, pp.408-423, 2009.

R. A. Leng, Interactions between microbial consortia in biofilms: a paradigm shift in rumen microbial ecology and enteric methane mitigation, Anim. Prod. Sci, vol.54, pp.519-543, 2014.

K. E. Lesmeister, A. J. Heinrichs, and M. T. Gabler, Effects of supplemental yeast (Saccharomyces cerevisiae) culture on rumen development, growth characteristics, and blood parameters in neonatal dairy calves, J. Dairy Sci, vol.87, pp.1832-1839, 2004.

N. E. Lewis, H. Nagarajan, and B. O. Palsson, Constraining the metabolic genotype-phenotype relationship using a phylogeny of in silico methods, Nat. Rev. Microbiol, vol.10, pp.291-305, 2012.

F. Li and L. L. Guan, Metatranscriptomic profiling reveals linkages between the active rumen microbiome and feed efficiency in beef cattle, Appl. Environ. Microbiol, vol.83, p.9, 2017.

G. Lima-mendez, J. Van-helden, A. Toussaint, L. , and R. , Reticulate representation of evolutionary and functional relationships between phage genomes, Mol. Biol. Evol, vol.25, pp.762-777, 2008.
URL : https://hal.archives-ouvertes.fr/hal-01624306

M. Lyte, Ú. Villageli, D. N. Crooker, B. A. Brown, and D. R. , Symposium review: microbial endocrinology-why the integration of microbes, epithelial cells, and neurochemical signals in the digestive tract matters to ruminant health, J. Dairy Sci, vol.101, pp.5619-5628, 2018.

D. Macheboeuf, D. Morgavi, Y. Papon, J. Mousset, A. et al., Dose-response effects of essential oils on in vitro fermentation activity of the rumen microbial population, Anim. Feed Sci. Technol, vol.145, pp.335-350, 2008.

J. C. Macrae and M. J. Ulyatt, Quantitative digestion of fresh herbage by sheep: II. The sites of digestion of some nitrogenous constituents, J. Agri. Sci, vol.82, pp.309-319, 1974.

R. Mahadevan, J. S. Edwards, D. , and F. J. , Dynamic flux balance analysis of diauxic growth in Escherichia coli, Biophys. J, vol.83, pp.1331-1340, 2002.
DOI : 10.1016/s0006-3495(02)73903-9

URL : https://doi.org/10.1016/s0006-3495(02)73903-9

N. Malmuthuge, P. J. Griebel, and L. L. Guan, Taxonomic identification of commensal bacteria associated with the mucosa and digesta throughout the gastrointestinal tracts of preweaned calves, Appl. Environ. Microbiol, vol.80, pp.2021-2028, 2014.

N. Malmuthuge, P. J. Griebel, and L. L. Guan, The gut microbiome and its potential role in the development and function of newborn calf gastrointestinal tract, Front. Vet. Sci, vol.2, p.36, 2015.

S. Mao, H. Wenjie, L. Junhua, Z. Ruiyang, and Z. Weiyun, In vitro effects of sodium bicarbonate buffer on rumen fermentation, levels of lipopolysaccharide and biogenic amine, and composition of rumen microbiota, J. Sci. Food. Agri, vol.97, pp.1276-1285, 2017.

S. Mao, M. Zhang, J. Liu, and W. Zhu, Characterising the bacterial microbiota across the gastrointestinal tracts of dairy cattle: membership and potential function, Sci. Rep, vol.5, p.16116, 2015.

S. Y. Mao, H. Wen-jie, and Z. Wei-yun, Microbiome-metabolome analysis reveals unhealthy alterations in the composition and metabolism of ruminal microbiota with increasing dietary grain in a goat model, Environ. Microbiol, vol.18, pp.525-541, 2016.

C. Martin, D. Morgavi, and M. Doreau, Methane mitigation in ruminants: from microbe to the farm scale, Animal, vol.4, pp.351-365, 2010.

S. A. Martin and D. J. Nisbet, Effect of direct-fed microbials on rumen microbial fermentation, J. Dairy Sci, vol.75, pp.1736-1744, 1992.
DOI : 10.3168/jds.s0022-0302(92)77932-6

G. Martinez-fernandez, S. E. Denman, J. Cheung, and C. S. Mcsweeney, Phloroglucinol degradation in the rumen promotes the capture of excess hydrogen generated from methanogenesis inhibition, Front. Microbiol, vol.8, p.1871, 2017.

J. B. Martiny, S. E. Jones, J. T. Lennon, and A. C. Martiny, , 2015.

, Microbiomes in light of traits: a phylogenetic perspective, Science, vol.350, p.6261

A. M. Mayer and E. Harel, Polyphenol oxidases in plants, Phytochem, vol.18, pp.80057-80063, 1979.

O. L. Mayorga, A. H. Kingston-smith, E. J. Kim, G. G. Allison, T. J. Wilkinson et al., Temporal metagenomic and metabolomic characterization of fresh perennial ryegrass degradation by rumen bacteria, Front. Microbiol, vol.7, p.1854, 2016.

A. B. Mcallan and R. H. Smith, Nucleic acid metabolism in the ruminant: determination of nucleic acids in digesta, Brit. J. Nutr, vol.23, pp.671-682, 1969.

T. A. Mcallister, H. D. Bae, G. A. Jones, and K. J. Cheng, Microbial attachment and feed digestion in the rumen, J. Anim. Sci, vol.72, pp.3004-3018, 1994.

C. A. Mccartney, R. J. Dewhurst, and I. D. Bull, Changes in the ratio of tetraether to diether lipids in cattle feces in response to altered dietary ratio of grass silage and concentrates, J. Anim. Sci, vol.92, pp.4095-4098, 2014.

M. J. Mcgeachie, J. E. Sordillo, T. Gibson, G. M. Weinstock, Y. Y. Liu et al., Longitudinal prediction of the infant gut microbiome with dynamic bayesian networks, Sci. Rep, vol.6, p.20359, 2016.

C. S. Mcsweeney, P. M. Kennedy, J. , and A. , Reticulo-ruminal motility in cattle (Bos indicus) and water buffaloes (Bubalus bubalis) fed a low quality roughage diet, Comp. Biochem. Physiol. A. Comp. Physiol, vol.94, pp.635-638, 1989.

C. S. Mcsweeney, B. Palmer, D. M. Mcneill, and D. O. Krause, Microbial interactions with tannins: nutritional consequences for ruminants, Anim. Feed Sci. Technol, vol.91, pp.83-93, 2001.

S. J. Meale, S. C. Li, P. Azevedo, H. Derakhshani, T. J. Devries et al., Weaning age influences the severity of gastrointestinal microbiome shifts in dairy calves, Sci. Rep, vol.7, p.198, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01595259

B. Mesuere, F. Van-der-jeugt, T. Willems, T. Naessens, B. Devreese et al., High-throughput metaproteomics data analysis with Unipept: a tutorial, J. Proteomics, vol.171, pp.11-22, 2018.

B. Michalet-doreau, I. Fernandez, C. Peyron, L. Millet, and G. Fonty, Fibrolytic activities and cellulolytic bacterial community structure in the solid and liquid phases of rumen contents, Reprod. Nutr. Dev, vol.41, pp.187-194, 2001.
URL : https://hal.archives-ouvertes.fr/hal-00900369

J. A. Mills, L. A. Crompton, J. L. Ellis, J. Dijkstra, A. Bannink et al., A dynamic mechanistic model of lactic acid metabolism in the rumen, J. Dairy Sci, vol.97, pp.2398-2414, 2014.

H. Minato, A. Endo, Y. Ootomo, and T. Uemura, Ecological treatise on the rumen fermentation II. The amylolytic and cellulolytic activities of the fractionated bacterial portions attached to the rumen solids, J. Gen. Appl. Microbiol, vol.12, pp.53-69, 1966.

I. Mizrahi, The role of the rumen microbiota in determining the feed efficiency of dairy cows, Beneficial Microorganisms in Multicellular Life Forms, pp.203-210, 2011.

I. Mizrahi, E. Rosenberg, E. F. Delong, S. Lory, E. Stackebrandt et al., Rumen Symbioses, The Prokaryotes: Prokaryotic Biology and Symbiotic Associations, pp.533-544, 2013.

D. P. Morgavi, E. Forano, C. Martin, and C. J. Newbold, Microbial ecosystem and methanogenesis in ruminants, Animal, vol.4, pp.1024-1036, 2010.

R. Muñoz-tamayo, S. Giger-reverdin, and D. Sauvant, Mechanistic modelling of in vitro fermentation by rumen microbiota, Anim. Feed. Sci. Technol, vol.220, pp.1-21, 2016.

R. Muñoz-tamayo, L. Puillet, J. B. Daniel, D. Sauvant, O. Martin et al., Review: To be or not to be an identifiable model. Is this a relevant question in animal science modelling?, Animal, vol.12, pp.701-712, 2018.

T. Muth, A. Behne, R. Heyer, F. Kohrs, D. Benndorf et al., The metaproteomeanalyzer: a powerful open-Source software suite for metaproteomics data analysis and interpretation, J. Proteome. Res, vol.14, pp.1557-1565, 2015.

C. Newbold, S. El-hassan, J. Wang, M. Ortega, W. et al., Influence of foliage from African multipurpose trees on activity of rumen protozoa and bacteria, Brit. J. Nutr, vol.78, pp.237-249, 1997.

C. J. Newbold, G. De-la-fuente, A. Belanche, E. Ramos-morales, and N. R. Mcewan, The role of ciliate protozoa in the rumen, Front. Microbiol, vol.6, p.1313, 2015.

C. J. Newbold, R. Wallace, and F. Mcintosh, Mode of action of the yeast Saccharomyces cerevisiae as a feed additive for ruminants, Brit. J. Nutr, vol.76, pp.249-226, 1996.

M. K. Nobu, T. Narihiro, C. Rinke, Y. Kamagata, S. G. Tringe et al., Microbial dark matter ecogenomics reveals complex synergistic networks in a methanogenic bioreactor, ISME J, vol.9, pp.1710-1722, 2015.

T. O'callaghan, R. Vázquez-fresno, A. Serra-cayuela, E. Dong, R. Mandal et al., Pasture feeding changes the bovine rumen and milk metabolome, Metabolites, vol.8, p.27, 2018.

C. G. Orpin, The rumen flagellate Callimastix frontalis: does sequestration occur?, J. Gen. Microbiol, vol.84, pp.395-398, 1974.

C. G. Orpin, The rumen flagellate Piromonas communis: its life-history and invasion of plant material in the rumen, J Gen Microbiol, vol.99, pp.107-117, 1977.

C. G. Orpin, Invasion of plant tissue in the rumen by the flagellate Neocallimastix frontalis, J Gen Microbiol, vol.98, pp.423-430, 1977.

L. B. Oyama, S. E. Girdwood, A. R. Cookson, N. Fernandez-fuentes, F. Prive et al., The rumen microbiome: an underexplored resource for novel antimicrobial discovery, NPJ Biofilms Microbiomes, vol.3, 2017.

D. H. Parks, M. Imelfort, C. T. Skennerton, P. Hugenholtz, T. et al., CheckM: assessing the quality of microbial genomes recovered from isolates, single cells, and metagenomes, Genome Res, vol.25, pp.1043-1055, 2015.

D. H. Parks, C. Rinke, M. Chuvochina, P. A. Chaumeil, B. J. Woodcroft et al., Recovery of nearly 8,000 metagenome-assembled genomes substantially expands the tree of life, Nat. Microbiol, vol.2, pp.1533-1542, 2017.

M. Patejko, J. Jacyna, and M. J. Markuszewski, Sample preparation procedures utilized in microbial metabolomics: an overview, J. Chromatogr. B. Analyt. Technol. Biomed. Life. Sci, vol.1043, pp.150-157, 2017.

A. K. Patra, Meta-analyses of effects of phytochemicals on digestibility and rumen fermentation characteristics associated with methanogenesis, J. Sci. Food Agri, vol.90, pp.2700-2708, 2010.

A. K. Patra and J. Saxena, Dietary phytochemicals as rumen modifiers: a review of the effects on microbial populations, Anton. Van Leeuwen, vol.96, pp.363-375, 2009.

A. K. Patra and J. Saxena, The effect and mode of action of saponins on the microbial populations and fermentation in the rumen and ruminant production, Nutr. Res. Rev, vol.22, pp.204-219, 2009.

G. J. Patti, O. Yanes, and G. Siuzdak, Metabolomics: the apogee of the omic triology, Nat. Rev. Mol. Cell Biol, vol.13, pp.263-269, 2012.

S. S. Paul, D. Bu, J. Xu, K. D. Hyde, Y. et al., A phylogenetic census of global diversity of gut anaerobic fungi and a new taxonomic framework, Fung. Divers, vol.89, pp.253-266, 2018.

S. S. Paul, D. N. Kamra, V. R. Sastry, N. P. Sahu, and N. Agarwal, Effect of administration of an anaerobic gut fungus isolated from wild blue bull (Boselaphus tragocamelus) to buffaloes (Bubalus bubalis) on in vivo ruminal fermentation and digestion of nutrients, Anim. Feed Sci. Technol, vol.115, pp.143-157, 2004.

F. C. Pereira and D. Berry, Microbial nutrient niches in the gut, Environ. Microbiol, vol.19, pp.1366-1378, 2017.

C. S. Pinares-patiño, S. H. Ebrahimi, J. C. Mcewan, K. G. Dodds, H. Clark et al., Is rumen retention time implicated in sheep differences in methane emission?, Proc. N, vol.71, pp.219-222, 2011.

C. S. Pinares-patiño, S. M. Hickey, E. A. Young, K. G. Dodds, S. Maclean et al., Heritability estimates of methane emissions from sheep, Animal, vol.7, pp.316-321, 2013.

C. S. Pinares-patiño, M. J. Ulyatt, K. R. Lassey, T. N. Barry, and C. W. Holmes, Rumen function and digestion parameters associated with differences between sheep in methane emissions when fed chaffed lucerne hay, J. Agri. Sci, vol.140, pp.205-214, 2003.

C. Poelaert, G. Nollevaux, C. Boudry, B. Taminiau, C. Nezer et al., Reducing agent can be omitted in the incubation medium of the batch in vitro fermentation model of the pig intestines, Animal, vol.12, pp.1154-1164, 2018.

J. Pollock, L. Glendinning, T. Wisedchanwet, and M. Watson, The madness of microbiome: attempting to find consensus 'Best practice' for 16S microbiome studies, Appl. Environ. Microbiol, vol.84, pp.2627-02617, 2018.

P. B. Pope, W. Smith, S. E. Denman, S. G. Tringe, K. Barry et al., Isolation of Succinivibrionaceae implicated in low methane emissions from Tammar wallabies, Science, vol.333, p.646, 2011.

M. Popova, E. Mcgovern, M. S. Mccabe, C. Martin, M. Doreau et al., The structural and functional capacity of ruminal and cecal microbiota in growing cattle was unaffected by dietary supplementation of linseed oil and nitrate, Front. Microbiol, vol.8, p.937, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01604273

M. Popova, D. P. Morgavi, M. , and C. , Methanogens and methanogenesis in the rumens and ceca of lambs fed two different high-grain-content diets, Appl. Environ. Microbiol, vol.79, pp.1777-1786, 2013.

M. O. Press, A. H. Wiser, Z. N. Kronenberg, K. W. Langford, M. Shakya et al., Hi-C deconvolution of a human gut microbiome yields high-quality draft genomes and reveals plasmid-genome interactions, 2017.

A. K. Puniya, A. Z. Salem, S. Kumar, S. S. Dagar, G. W. Griffith et al., Role of live microbial feed supplements with reference to anaerobic fungi in ruminant productivity: a review, J. Integr. Agri, vol.14, issue.14, pp.60837-60843, 2015.

C. Qian and R. L. Hettich, Optimized extraction method to remove humic acid interferences from soil samples prior to microbial proteome measurements, J. Proteome Res, vol.16, pp.2537-2546, 2017.

E. Ramos-morales, G. De-la-fuente, S. Duval, C. Wehrli, M. Bouillon et al., Antiprotozoal effect of saponins in the rumen can be enhanced by chemical modifications in their structure, Front. Microbiol, vol.8, p.399, 2017.

M. Rey, F. Enjalbert, S. Combes, L. Cauquil, O. Bouchez et al., Establishment of ruminal bacterial community in dairy calves from birth to weaning is sequential, J. Appl. Microbiol, vol.116, pp.245-257, 2014.

M. Rezaeian, G. W. Beakes, P. , and D. S. , Distribution and estimation of anaerobic zoosporic fungi along the digestive tracts of sheep, Mycol. Res, vol.108, pp.1227-1233, 2004.

R. Roehe, R. J. Dewhurst, C. A. Duthie, J. A. Rooke, N. Mckain et al., Bovine host genetic variation influences rumen microbial methane production with best selection criterion for low methane emitting and efficiently feed converting hosts based on metagenomic gene aqbundance, PloS Genet, vol.12, p.20, 2016.

D. D. Roumpeka, R. J. Wallace, F. Escalettes, I. Fotheringham, and M. Watson, A Review of bioinformatics tools for bio-prospecting from metagenomic sequence data, Front. Genet, vol.8, p.23, 2017.

F. Rubino, C. Carberry, S. M. Waters, D. Kenny, M. S. Mccabe et al., Divergent functional isoforms drive niche specialisation for nutrient acquisition and use in rumen microbiome, ISME J, vol.11, p.1510, 2017.

J. B. Russell and A. J. Houlihan, Ionophore resistance of ruminal bacteria and its potential impact on human health, FEMS Microbiol. Rev, vol.27, pp.65-74, 2003.

J. B. Russell and H. J. Strobel, Microbial energetics, " in Quantitative Aspects of Ruminant Digestion and Metabolism, 1993.

F. Saleem, B. N. Ametaj, S. Bouatra, R. Mandal, Q. Zebeli et al., A metabolomics approach to uncover the effects of grain diets on rumen health in dairy cows, J. Dairy Sci, vol.95, pp.6606-6623, 2012.

F. Saleem, S. Bouatra, A. C. Guo, N. Psychogios, R. Mandal et al., The bovine ruminal fluid metabolome, Metabolomics, vol.9, pp.360-378, 2013.

G. Sasson, S. K. Ben-shabat, E. Seroussi, A. Doron-faigenboim, N. Shterzer et al., Heritable bovine rumen bacteria are phylogenetically related and correlated with the cow's capacity to harvest energy from it's feed, Mbio, vol.8, p.12, 2017.

S. Saxena, J. P. Sehgal, A. K. Puniya, and K. Singh, Effect of administration of rumen fungi on production performance of lactating buffaloes, Benef. Microbes, vol.1, pp.183-188, 2010.

G. T. Schelling, Monensin mode of action in the rumen, J. Anim. Sci, vol.58, pp.1518-1527, 1984.

S. R. Schooling and T. J. Beveridge, Membrane vesicles: an overlooked component of the matrices of biofilms, J. Bacteriol, vol.188, pp.5945-5957, 2006.

S. R. Schooling, A. Hubley, and T. J. Beveridge, Interactions of DNA with biofilm-derived membrane vesicles, J. Bacteriol, vol.191, pp.4097-4102, 2009.

H. Seedorf, S. Kittelmann, G. Henerson, and P. H. Janssen, RIM-DB: a taxonomic framework for community structure analysis of methanogenic archaea from the rumen and other intestinal environments, Peer J, vol.2, p.494, 2014.

R. Seshadri, S. C. Leahy, G. T. Attwood, K. H. Teh, S. C. Lambie et al., Cultivation and sequencing of rumen microbiome members from the Hungate1000 Collection, Nat. Biotech, vol.36, p.359, 2018.
URL : https://hal.archives-ouvertes.fr/hal-02094598

Y. Shaani, T. Zehavi, S. Eyal, J. Miron, and I. Mizrahi, Microbiome niche modification drives diurnal rumen community assembly, overpowering individual variability and diet effects, ISME J, 2018.

S. K. Shabat, G. Sasson, A. Doron-faigenboim, T. Durman, S. Yaacoby et al., Specific microbiome-dependent mechanisms underlie the energy harvest efficiency of ruminants, ISME J, vol.10, pp.2958-2972, 2016.

O. C. Shanks, C. A. Kelty, S. Archibeque, M. Jenkins, R. J. Newton et al., Community structures of fecal bacteria in cattle from different animal feeding operations, Appl. Environ. Microbiol, vol.77, pp.2992-3001, 2011.

W. Shi, C. D. Moon, S. C. Leahy, D. Kang, J. Froula et al., Methane yield phenotypes linked to differential gene expression in the sheep rumen microbiome, Genome Res, vol.24, pp.1517-1525, 2014.

T. Shlomi, M. N. Cabili, M. J. Herrgard, B. O. Palsson, R. et al., Network-based prediction of human tissue-specific metabolism, Nat. Biotechnol, vol.26, pp.1003-1010, 2008.
DOI : 10.1038/nbt.1487

S. K. Shukla and T. S. Rao, Staphylococcus aureus biofilm removal by targeting biofilm-associated extracellular proteins, Indian J. Med. Res, vol.146, pp.1-8, 2017.

M. L. Signorini, L. P. Soto, M. V. Zbrun, G. J. Sequeira, M. R. Rosmini et al., Impact of probiotic administration on the health and fecal microbiota of young calves: a meta-analysis of randomized controlled trials of lactic acid bacteria, Res. Vet. Sci, vol.93, pp.250-258, 2012.

C. S. Smillie, M. B. Smith, J. Friedman, O. X. Cordero, L. A. David et al., Ecology drives a global network of gene exchange connecting the human microbiome, Nature, vol.480, pp.241-244, 2011.

T. J. Snelling, W. , and R. J. , The rumen microbial metaproteome as revealed by SDS-PAGE, BMC Microbiol, vol.17, p.9, 2017.
DOI : 10.1186/s12866-016-0917-y

URL : https://bmcmicrobiol.biomedcentral.com/track/pdf/10.1186/s12866-016-0917-y

K. V. Solomon, C. H. Haitjema, J. K. Henske, S. P. Gilmore, D. Borges-rivera et al., Early-branching gut fungi possess a large, comprehensive array of biomass-degrading enzymes, Science, vol.351, pp.1192-1195, 2016.
DOI : 10.1126/science.aad1431

URL : https://science.sciencemag.org/content/sci/351/6278/1192.full.pdf

Y. Song, N. Malmuthuge, M. A. Steele, and L. L. Guan, Shift of hindgut microbiota and microbial short chain fatty acids profiles in dairy calves from birth to pre-weaning, FEMS Microbiol. Ecol, vol.94, p.179, 2018.

C. Stenkamp-strahm, C. Mcconnel, S. Magzamen, Z. Abdo, R. et al., Associations between Escherichia coli O157 shedding and the faecal microbiota of dairy cows, J. Appl. Microbiol, vol.124, pp.881-898, 2018.

E. J. Stewart, Growing Unculturable Bacteria, J. Bacteriol, vol.194, pp.4151-4160, 2012.
DOI : 10.1128/jb.00345-12

URL : http://europepmc.org/articles/pmc3416243?pdf=render

R. D. Stewart, M. D. Auffret, A. Warr, A. H. Wiser, M. O. Press et al., Assembly of 913 microbial genomes from metagenomic sequencing of the cow rumen, Nat. Comm, vol.9, p.870, 2018.

S. Sugimoto, F. Sato, R. Miyakawa, A. Chiba, S. Onodera et al., Broad impact of extracellular DNA on biofilm formation by clinically isolated Methicillin-resistant and-sensitive strains of Staphylococcus aureus, Sci. Rep, vol.8, p.2254, 2018.

H. Sun, D. Wang, B. Wang, J. Wang, H. Liu et al., Metabolomics of four biofluids from dairy cows: potential biomarkers for milk production and quality, J. Proteome Res, vol.14, pp.1287-1298, 2015.

O. Svartstrom, J. Alneberg, N. Terrapon, V. Lombard, I. De-bruijn et al., Ninety-nine de novo assembled genomes from the moose (Alces alces) rumen microbiome provide new insights into microbial plant biomass degradation, ISME J, vol.11, pp.2538-2551, 2017.

I. Tapio, K. J. Shingfield, N. Mckain, A. Bonin, D. Fischer et al., Oral Samples as non-invasive proxies for assessing the composition of the rumen microbial community, PLoS ONE, vol.11, 2016.

I. Tapio, T. J. Snelling, F. Strozzi, W. , and R. J. , The ruminal microbiome associated with methane emissions from ruminant livestock, J. Anim. Sci. Biotechnol, vol.8, p.11, 2017.
DOI : 10.1186/s40104-017-0141-0

URL : https://doi.org/10.1186/s40104-017-0141-0

M. Thomas, M. Webb, S. Ghimire, A. Blair, K. Olson et al., Metagenomic characterization of the effect of feed additives on the gut microbiome and antibiotic resistome of feedlot cattle, Sci. Rep, vol.7, p.12257, 2017.

H. M. Timmerman, L. Mulder, H. Everts, D. C. Van-espen, E. Van-der-wal et al., Health and growth of veal calves fed milk replacers with or without probiotics, J. Dairy Sci, vol.88, pp.2154-2165, 2005.
DOI : 10.3168/jds.s0022-0302(05)72891-5

V. K. Tripathi, J. P. Sehgal, A. K. Puniya, and K. Singh, Effect of administration of anaerobic fungi isolated from cattle and wild blue bull (Boselaphus tragocamelus) on growth rate and fibre utilization in buffalo calves, Arch. Anim. Nutr, vol.61, pp.416-423, 2007.

G. W. Tyson, J. Chapman, P. Hugenholtz, E. E. Allen, R. J. Ram et al., Community structure and metabolism through reconstruction of microbial genomes from the environment, Nature, vol.428, pp.37-43, 2004.

, World Population Prospects, United Nations, 2015.

J. D. Vaidya, B. Van-den-bogert, J. E. Edwards, J. Boekhorst, S. Van-gastelen et al., The effect of DNA extraction methods on observed microbial communities from fibrous and liquid rumen fractions of dairy cows, Front. Microbiol, vol.9, p.92, 2018.

M. E. Van-amburgh, E. A. Collao-saenz, R. J. Higgs, D. A. Ross, E. B. Recktenwald et al., The cornell net carbohydrate and protein system: updates to the model and evaluation of version 6.5, J. Dairy Sci, vol.98, pp.6361-6380, 2015.

F. A. Van-nimwegen, J. Penders, E. E. Stobberingh, D. S. Postma, G. H. Koppelman et al., Mode and place of delivery, gastrointestinal microbiota, and their influence on asthma and atopy, J. Allergy Clin. Immunol, vol.128, pp.948-955, 2011.

A. Varma, B. W. Boesch, and B. O. Palsson, Stoichiometric interpretation of Escherichia coli glucose catabolism under various oxygenation rates, Appl. Environ. Microbiol, vol.59, pp.2465-2473, 1993.

A. Varma and B. O. Palsson, Stoichiometric flux balance models quantitatively predict growth and metabolic by-product secretion in wild-type Escherichia coli W3110, Appl. Environ. Microbiol, vol.60, pp.3724-3731, 1994.

G. D. Vogels, W. F. Hoppe, and C. K. Stumm, Association of methanogenic bacteria with rumen ciliates, Appl. Environ. Microbiol, vol.40, pp.608-612, 1980.

R. J. Wallace, Gut microbiology-broad genetic diversity, yet specific metabolic niches, Animal, vol.2, pp.661-668, 2008.

R. J. Wallace, R. Onodera, and M. A. Cotta, Metabolism of nitrogencontaining compounds, The rumen microbial ecosystem, pp.283-328, 1997.

R. J. Wallace, J. A. Rooke, C. Duthie, J. J. Hyslop, D. W. Ross et al., Archaeal abundance in post-mortem ruminal digesta may help predict methane emissions from beef cattle, Sci. Rep, vol.4, p.5892, 2014.

R. J. Wallace, J. A. Rooke, N. Mckain, C. Duthie, J. J. Hyslop et al., The rumen microbial metagenome associated with high methane production in cattle, BMC Genomics, vol.16, p.839, 2015.

J. Wang, H. Fan, Y. Han, J. Z. Zhao, and Z. J. Zhou, Characterization of the microbial communities along the gastrointestinal tract of sheep by 454 pyrosequencing analysis. Asian-Aus, J. Anim. Sci, vol.30, pp.100-110, 2017.

M. Wang, J. J. Carver, V. V. Phelan, L. M. Sanchez, N. Garg et al., Sharing and community curation of mass spectrometry data with global natural products social molecular networking, Nat. Biotechnol, vol.34, p.828, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01371824

O. Wang, T. A. Mcallister, G. Plastow, K. Stanford, B. Selinger et al., Interactions of the hindgut mucosa-associated microbiome with its host regulate shedding of Escherichia coli O157:H7 by cattle, Appl. Environ. Microbiol, vol.84, pp.1738-1755, 2018.

P. Wang, S. Zhao, X. Wang, Y. Zhang, N. Zheng et al., Ruminal methanogen community in dairy cows fed agricultural residues of corn stover, rapeseed, and cottonseed meals, J. Agric. Food Chem, vol.64, pp.5439-5445, 2016.

P. J. Weimer, Redundancy, resilience, and host specificity of the ruminal microbiota: implications for engineering improved ruminal fermentations, Front. Microbiol, vol.6, p.296, 2015.

P. J. Weimer, M. S. Cox, T. Vieira-de-paula, M. Lin, M. B. Hall et al., Transient changes in milk production efficiency and bacterial community composition resulting from near-total exchange of ruminal contents between high-and low-efficiency Holstein cows, J. Dairy Sci, vol.100, pp.7165-7182, 2017.

P. J. Weimer, D. M. Stevenson, H. C. Mantovani, M. , and S. L. , Host specificity of the ruminal bacterial community in the dairy cow following near-total exchange of ruminal contents, J. Dairy Sci, vol.93, pp.5902-5912, 2010.

I. Rome, T. J. Wilkinson, S. A. Huws, J. E. Edwards, A. H. Kingston-smith et al., CowPI: a rumen microbiome focussed version of the PICRUSt functional inference software, Front. Microbiol, vol.9, p.1095, 2015.

A. G. Williams, C. , and G. S. , The Rumen Protozoa, 1992.

A. G. Williams, C. , and G. S. , The rumen protozoa, 1997.

P. Wilmes and P. L. Bond, The application of two-dimensional polyacrylamide gel electrophoresis and downstream analyses to a mixed community of prokaryotic microorganisms, Environ. Microbiol, vol.6, pp.911-920, 2004.

M. J. Wolin, T. L. Miller, and C. S. Stewart, Microbe-microbe interactions, The Rumen Microbial Ecosystem, pp.467-491, 1997.

A. Wright, K. , and A. V. , Does the complexity of the rumen microbial ecology preclude methane mitigation, Anim. Feed Sci. Technol. 166, vol.167, pp.248-253, 2011.

L. Wu, H. Wang, Z. Zhang, R. Lin, Z. Zhang et al., Comparative metaproteomic analysis on consecutively rehmannia glutinosa-monocultured rhizosphere soil, PLoS ONE, vol.6, p.20611, 2011.

D. R. Yáñez-ruiz, L. Abecia, and C. J. Newbold, Manipulating rumen microbiome and fermentation through interventions during early life: a review, Front. Microbiol, vol.6, p.1133, 2015.

D. R. Yáñez-ruiz, B. Macías, E. Pinloche, and C. J. Newbold, The persistence of bacterial and methanogenic archaeal communities residing in the rumen of young lambs, FEMS Microbiol. Ecol, vol.72, pp.272-278, 2010.

C. J. Yeoman, S. L. Ishaq, E. Bichi, S. K. Olivo, J. Lowe et al., Biogeographical differences in the influence of maternal microbial sources on the early successional development of the bovine neonatal gastrointestinal tract, Sci. Rep, vol.8, p.3197, 2018.

L. Yi, S. Shi, Y. Wang, W. Huang, Z. Xia et al., Serum metabolic profiling reveals altered metabolic pathways in patients with posttraumatic cognitive impairments, Sci. Rep, vol.6, p.21320, 2016.

Z. Yu and M. Morrisson, Comparisons of different hypervariable regions of rrs genes for use in fingerprinting of microbial communities by PCR-denaturing gradient gel electrophoresis, Appl. Environ. Microbiol, vol.70, pp.4800-4806, 2004.

Z. Yu and M. Morrisson, Improved extraction of PCR-quality community DNA from digesta and fecal samples, Biotechniques, vol.36, pp.808-812, 2004.

Y. Zeng, D. Zeng, X. Ni, H. Zhu, P. Jian et al., Microbial community compositions in the gastrointestinal tract of Chinese Mongolian sheep using Illumina MiSeq sequencing revealed high microbial diversity, vol.7, p.75, 2017.

K. Zengler and B. O. Palsson, A road map for the development of community systems (CoSy) biology, Nat. Rev. Microbiol, vol.10, p.366, 2012.

K. Zengler, G. Toledo, M. Rappe, J. Elkins, E. J. Mathur et al., Cultivating the uncultured, Proc. Natl. Acad. Sci. U.S.A, vol.99, pp.15681-15686, 2002.

B. Zhang and S. Horvath, A general framework for weighted gene co-expression network analysis, Stat. Appl. Genet. Mol. Biol, vol.4, p.17, 2005.

J. Zhang, H. Shi, Y. Wang, S. Li, Z. Cao et al., Effect of dietary forage to concentrate ratios on dynamic profile changes and interactions of ruminal microbiota and metabolites in Holstein heifers, Front. Microbiol, vol.8, p.2206, 2017.

J. Zhang, S. Zhao, . Zhang, P. Sun, D. Bu et al., New primers targetting full-length ciliate 18S rRNA genes and evaluation of dietary effect on rumen ciliate diversity in dairy cows, Curr. Microbiol, vol.71, pp.650-657, 2015.

R. Zhang, W. Zhu, L. Jiang, M. , and S. , Comparative metabolome analysis of ruminal changes in Holstein dairy cows fed low-or high-concentrate diets, Metabolomics, vol.13, p.74, 2017.

S. Zhao, G. Li, N. Zheng, J. Wang, Y. et al., Steam explosion enhances digestibility and fermentation of corn stover by facilitating ruminal microbial colonization, Bioresour. Technol, vol.253, pp.244-251, 2018.

S. Zhao, J. Zhao, D. Bu, P. Sun, J. Wang et al., Metabolomics analysis reveals large effect of roughage tpes on rumen microbial metabolic profilein dairy cows, Lett. Appl. Microbiol, vol.59, pp.79-85, 2014.

R. A. Zinn and F. N. Owens, A rapid procedure for purine measurement and its use for estimating net ruminal protein synthesis. Can, J. Anim. Sci, vol.66, pp.157-166, 1986.

R. Zitnan, J. Voigt, U. Schonhusen, J. Wegner, M. Kokardova et al., Influence of dietary concentrate to forage ratio on the development of rumen mucosa in calves, Arch. Tierernahr, vol.51, pp.279-291, 1998.

, Conflict of Interest Statement: The authors declare that the research was

©. Copyright, . Huws, . Creevey, . Oyama, . Mizrahi et al., This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, 2018.