N. Norsker, M. J. Barbosa, M. H. Vermuë, and R. H. Wijffels, Microalgal productiona close look at the economics, Biotechnology advances, vol.29, issue.1, pp.24-27, 2011.
DOI : 10.1016/j.biotechadv.2010.08.005

M. A. Borowitzka, Limits to Growth, pp.203-226, 1998.

J. T. Kirk, Light and Photosynthesis in Aquatic Ecosystems, 1994.

J. Huisman, H. C. Matthijs, P. M. Visser, H. Balke, C. A. Sigon et al.,

. Mur, Principles of the light-limited chemostat: theory and ecological applications, Antonie van Leeuwenhoek, vol.81, issue.1, pp.117-133, 2002.

D. Demory, C. Combe, P. Hartmann, A. Talec, E. Pruvost et al.,

J. Bristeau, S. Sainte-marie, F. Rabouille, A. Mairet, O. Sciandra et al., How do microalgae perceive light in a high-rate pond? towards more realistic lagrangian experiments, Royal Society Open Science, vol.5, issue.5
URL : https://hal.archives-ouvertes.fr/hal-01830067

J. Huisman and F. J. Weissing, Light-limited growth and competition for light in well-mixed aquatic environments: An elementary model, Ecology, vol.75, issue.2, pp.507-520, 1994.

D. J. Gerla, W. M. Mooij, and J. Huisman, Photoinhibition 555 and the assembly of light-limited phytoplankton communities, Oikos, vol.120, issue.3, pp.359-368, 2011.

S. Hsu, C. Lin, C. Hsieh, and K. Yoshiyama, Dynamics of phytoplankton communities under photoinhibition, Bulletin of Mathematical Biology, vol.75, issue.7, pp.1207-1232, 2013.

F. Mairet, R. Muñoz-tamayo, and O. Bernard, Adaptive control for optimizing microalgae production, IFAC Proceedings Volumes, vol.46, pp.297-302, 2013.
DOI : 10.3182/20131216-3-in-2044.00027

URL : https://hal.archives-ouvertes.fr/hal-00921486

F. Mairet and O. Bernard, The photoinhibistat: Operating 565 microalgae culture under photoinhibition for strain selection, IFAC-PapersOnLine, vol.49, issue.7, pp.1068-1073, 2016.
DOI : 10.1016/j.ifacol.2016.07.344

C. Martínez, O. Bernard, and F. Mairet, Maximizing microalgae productivity by shading outdoor cultures, IFAC-PapersOnLine, vol.50, issue.1, pp.8734-8739, 2017.

M. Huesemann, B. Crowe, P. Waller, A. Chavis, S. Hobbs et al., A validated model to predict microalgae growth in outdoor pond cultures subjected to fluctuating light intensities and 575 water temperatures, Algal Research, vol.13, pp.195-206, 2016.
DOI : 10.1016/j.algal.2015.11.008

URL : https://doi.org/10.1016/j.algal.2015.11.008

J. Quinn, L. D. Winter, and T. Bradley, Microalgae bulk growth model with application to industrial scale systems, Bioresource technology, vol.102, issue.8, pp.5083-5092, 2011.
DOI : 10.1016/j.biortech.2011.01.019

W. Blanken, P. R. Postma, L. Winter, and R. H. , Wijf580 fels, M. Janssen, Predicting microalgae growth, vol.14, pp.28-38, 2016.

Q. Béchet, N. Coulombier, C. Vasseur, T. Lasserre, L. Le-dean et al., Full-scale validation of an algal productivity model including nitrogen limitation, Algal, vol.585, issue.31, pp.377-386, 2018.

H. Qiang, H. Guterman, and A. Richmond, Physiological characteristics of spirulina platensis (cyanobacteria) cultured at ultrahigh cell densities1, Journal of Phycology, vol.32, issue.6, pp.1066-1073, 1996.
DOI : 10.1111/j.0022-3646.1996.01066.x

A. Vonshak and R. Guy, Photoadaptation, photoinhibition and productivity in the blue-green alga, spirulina platensis grown outdoors, Plant, Cell Environment, vol.15, issue.5, pp.613-616, 1992.

P. Talbot, J. Thébault, A. Dauta, and J. De-la-noüe, A 595 comparative study and mathematical modeling of temperature, light and growth of three microalgae potentially useful for wastewater treatment, Water research, vol.25, issue.4, pp.465-472, 1991.

J. Neidhardt, J. R. Benemann, L. Zhang, and A. Melis, , p.600

, Photosystem-ii repair and chloroplast recovery from irradiance stress: relationship between chronic photoinhibition, light-harvesting chlorophyll antenna size and photosynthetic productivity in dunaliella salina (green algae), Photosynthesis Research, vol.56, issue.2, pp.175-184, 1998.

T. Anning, H. L. Macintyre, S. M. Pratt, P. J. Sammes, S. Gibb et al., Photoacclimation in the marine diatom skeletonema costatum, Limnology and Oceanography, vol.45, issue.8, pp.1807-1817, 2000.

C. Ugwu, H. Aoyagi, and H. Uchiyama, Photobioreactors 610 for mass cultivation of algae, Bioresource technology, vol.99, issue.10, pp.4021-4028, 2008.

O. Bernard, B. Mairet, and . Chachuat, Modelling of Microalgae Culture Systems with Applications to Control and Optimization, p.615
URL : https://hal.archives-ouvertes.fr/hal-01245875

. Cham, , pp.59-87, 2016.

F. G. Fernández, F. G. Camacho, J. A. Pérez, J. M. Sevilla, and E. M. Grima, A model for light distribution and average solar irradiance inside outdoor tubular photobioreactors for the microalgal mass cul620 ture, Biotechnology and Bioengineering, vol.55, issue.5, pp.701-714, 1997.

Q. Béchet, A. Shilton, and B. Guieysse, Modeling the effects of light and temperature on algae growth: State of the art and critical assessment for productivity pre625 diction during outdoor cultivation, Biotechnology Advances, vol.31, issue.8, pp.1648-1663, 2013.

Y. Yun and J. M. Park, Kinetic modeling of the lightdependent photosynthetic activity of the green microalga chlorella vulgaris, Biotechnology and Bioengi630 neering, vol.83, issue.3, pp.303-311, 2003.

E. Evers, A model for light-limited continuous cultures: Growth, shading, and maintenance, Biotechnology and bioengineering, vol.38, issue.3, pp.254-259, 1991.

J. H. Steele, Environmental control of photosynthesis 635 in the sea, Limnology and Oceanography, vol.7, issue.2, pp.137-150, 1962.

O. Bernard and B. Rémond, Validation of a simple model accounting for light and temperature effect on microalgal growth, Bioresource Technology, vol.123, pp.520-640, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00848389

K. Yeh, J. Chang, and W. Chen, Effect of light supply and carbon source on cell growth and cellular composition of a newly isolated microalga chlorella vulgaris esp-31, Engineering in Life Sciences, vol.10, issue.3, pp.201-645, 2010.

M. Derraz, A. Dauta, J. Capblancq, and M. Abassi, Influence de la lumire et de la temprature sur les taux de croissance et de photosynthse de scenedesmus crassus chodat, p.650

, Ann. Limnol.-Int. J. Lim, vol.31, issue.1, pp.65-74, 1995.

H. Qiang, H. Guterman, and A. Richmond, Physiological characteristics of spirulina platensis (cyanobacteria) cultured at ultrahigh cell densities 1, Journal of Phycology, vol.32, issue.6, pp.1066-1073, 1996.
DOI : 10.1111/j.0022-3646.1996.01066.x

H. Qiang and A. Richmond, Productivity and photosynthetic efficiency ofspirulina platensis as affected by light intensity, algal density and rate of mixing in a flat plate photobioreactor, Journal of Applied Phycology, vol.8, issue.2, pp.139-145, 1996.

Q. Hu, N. Kurano, M. Kawachi, I. Iwasaki, and S. Miyachi, Ultrahigh-cell-density culture of a marine green alga chlorococcum littorale in a flat-plate photobioreactor, Applied Microbiology and Biotechnology, vol.49, issue.6, pp.655-662, 1998.

H. Qiang, Y. Zarmi, and A. Richmond, Combined effects of light intensity, light-path and culture density on output rate of spirulina platensis (cyanobacteria), European Journal of Phycology, vol.33, issue.2, pp.165-171, 1998.