T. Auxenfans, S. Buchoux, K. Djellab, C. Avondo, E. Husson et al., Mild pretreatment and enzymatic saccharification of cellulose with recycled ionic liquids towards one-batch process, Carbohydr. Polym, vol.90, issue.2, pp.805-813, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00737720

T. Auxenfans, S. Buchoux, E. Husson, and C. Sarazin, Efficient enzymatic saccharification of Miscanthus: Energy-saving by combining dilute acid and ionic liquid pretreatments, Biomass Bioenergy, vol.62, pp.82-92, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01988324

T. Auxenfans, S. Buchoux, D. Larcher, G. Husson, E. Husson et al., Enzymatic saccharification and structural properties of industrial wood sawdust: Recycled ionic liquids pretreatments, Energy Convers. Manage, vol.88, pp.1094-1103, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01344403

T. Auxenfans, E. Husson, and C. Sarazin, Simultaneous pretreatment and enzymatic saccharification of (ligno) celluloses in aqueous-ionic liquid media: a compromise, Biochem. Eng. J, vol.117, pp.77-86, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01988406

J. Beaugrand, G. Chambat, V. W. Wong, F. Goubet, C. Rémond et al., Impact and efficiency of GH10 and GH11 thermostable endoxylanases on wheat bran and alkaliextractable arabinoxylans, Carbohydr. Res, vol.339, issue.15, pp.2529-2540, 2004.
URL : https://hal.archives-ouvertes.fr/hal-00306773

P. Biely, M. Vr?anská, M. Tenkanen, and D. Kluepfel, Endo-?-1,4-xylanase families: differences in catalytic properties, J. Biotechnol, vol.57, issue.1, pp.151-166, 1997.

, a) Xylose yields (%) obtained with xylanase Tx-xyn11 (100 IU/g). (b) Glucose yields achieved with cellulase from T. reesei (5 IU/mL). (c) Xylose (striped bars) and Glucose (grey bars) yields (%) obtained with the mix of both xylanase Tx-xyn11 (100 IU/g, Performances after 48 h of in situ enzymatic saccharification of wheat straw (2% w/v) in aqueous-IL media for different

E. Husson, Bioresource Technology, vol.251, pp.280-287, 2018.

M. Brahim, N. Boussetta, N. Grimi, E. Vorobiev, I. Zieger-devin et al., Pretreatment optimization from rapeseed straw and lignin characterization, Ind. Crops Prod, vol.95, pp.643-650, 2017.

R. Chandra, R. Bura, W. Mabee, A. Berlin, X. Pan et al., Substrate pretreatment: the key to effective enzymatic hydrolysis of lignocellulosics?, Adv. Biochem. Eng./Biotechnol, vol.108, pp.67-93, 2007.

G. Cheng, P. Varanasi, C. Li, H. Liu, Y. B. Melnichenko et al., Transition of cellulose crystalline structure and surface morphology of biomass as a function of ionic liquid pretreatment and its relation to enzymatic hydrolysis, Biomacromolecules, vol.12, issue.4, pp.933-941, 2011.

C. Bubalo, M. Rado?evi?, K. Radoj?i?-redovnikovi?, I. Halambek, J. Gaurina-sr?ek et al., A brief overview of the potential environmental hazards of ionic liquids, Ecotoxicol. Environ. Saf, vol.99, pp.1-12, 2014.

A. M. Da-costa-lopes, K. G. João, D. F. Rubik, E. Bogel-?ukasik, L. C. Duarte et al., Pre-treatment of lignocellulosic biomass using ionic liquids: Wheat straw fractionation, Bioresour. Technol, vol.142, pp.198-208, 2013.

E. De-jong and G. Jungmeier, Chapter 1-biorefinery concepts in comparison to petrochemical refineries A2-Pandey, Ashok, pp.3-33, 2015.

R. Deutschmann and R. F. Dekker, From plant biomass to bio-based chemicals: latest developments in xylan research, Biotechnol. Adv, vol.30, issue.6, pp.1627-1640, 2012.

M. Dittmar, Development towards sustainability: how to judge past and proposed policies?, Sci. Total Environ, vol.472, pp.282-288, 2014.

K. S. Egorova and V. P. Ananikov, Toxicity of ionic liquids: eco(cyto)activity as complicated, but unavoidable parameter for task-specific optimization, ChemSuschem, vol.7, issue.2, pp.336-360, 2014.

A. A. Elgharbawy, M. Z. Alam, M. Moniruzzaman, and M. Goto, Ionic liquid pretreatment as emerging approaches for enhanced enzymatic hydrolysis of lignocellulosic biomass, Biochem. Eng. J, vol.109, pp.252-267, 2016.

P. Engel, S. Krull, B. Seiferheld, and A. C. Spiess, Rational approach to optimize cellulase mixtures for hydrolysis of regenerated cellulose containing residual ionic liquid, Bioresour. Technol, vol.115, pp.27-34, 2012.

A. Garcia-lorenzo, E. Tojo, J. Tojo, M. Teijeira, F. J. Rodriguez-berrocal et al., Cytotoxicity of selected imidazolium-derived ionic liquids in the human Caco-2 cell line. Sub-structural toxicological interpretation through a QSAR study, Green Chem, vol.10, issue.5, pp.508-516, 2008.

C. S. Goh, H. T. Tan, K. T. Lee, and N. Brosse, Evaluation and optimization of organosolv pretreatment using combined severity factors and response surface methodology, Biomass Bioenergy, vol.35, issue.9, pp.4025-4033, 2011.

. Grandviewresearch, Ionic Liquids Market Size And Forecast By Application (Solvents & Catalysts, Extractions & Separations, Bio-Refineries, Energy Storage), By Region, Africa) And Trend Analysis From, vol.ID, pp.1-68038, 2014.

X. Hou, Q. Liu, T. J. Smith, N. Li, and M. Zong, Evaluation of toxicity and biodegradability of cholinium amino acids ionic liquids, PLoS One, vol.8, issue.3, p.59145, 2013.

J. Hu, V. Arantes, A. Pribowo, and J. N. Saddler, The synergistic action of accessory enzymes enhances the hydrolytic potential of a "cellulase mixture" but is highly substrate specific, Biotechnol. Biofuels, vol.6, issue.1, p.112, 2013.

J. Hu, V. Arantes, and J. N. Saddler, The enhancement of enzymatic hydrolysis of lignocellulosic substrates by the addition of accessory enzymes such as xylanase: is it an additive or synergistic effect?, Biotechnol. Biofuels, vol.4, issue.1, p.36, 2011.

Y. Huang, X. Wei, S. Zhou, M. Liu, Y. Tu et al., Steam explosion distinctively enhances biomass enzymatic saccharification of cotton stalks by largely reducing cellulose polymerization degree in G. barbadense and G. hirsutum, Bioresour. Technol, vol.181, pp.224-230, 2015.

E. Husson, S. Buchoux, C. Avondo, D. Cailleu, K. Djellab et al., Enzymatic hydrolysis of ionic liquid-pretreated celluloses: contribution of CP-MAS 13C NMR and SEM, Bioresour. Technol, vol.102, issue.15, pp.7335-7342, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00637407

V. W. Jaeger and J. Pfaendtner, Structure, dynamics, and activity of xylanase solvated in binary mixtures of ionic liquid and water, ACS Chem. Biol, vol.8, issue.6, pp.1179-1186, 2013.

L. Jia, G. A. Gonçalves, Y. Takasugi, Y. Mori, S. Noda et al., Effect of pretreatment methods on the synergism of cellulase and xylanase during the hydrolysis of bagasse, Bioresour. Technol, vol.185, pp.158-164, 2015.

L. J. Jönsson and C. Martín, Pretreatment of lignocellulose: Formation of inhibitory by-products and strategies for minimizing their effects, Bioresour. Technol, vol.199, pp.103-112, 2016.

D. K. Kidby and D. J. Davidson, A convenient ferricyanide estimation of reducing sugars in the nanomole range, Anal. Biochem, vol.55, issue.1, pp.321-325, 1973.

S. Kim, J. M. Park, J. Seo, and C. H. Kim, Sequential acid-/alkali-pretreatment of empty palm fruit bunch fiber, Bioresour. Technol, vol.109, pp.229-233, 2012.

C. Li, B. Knierim, C. Manisseri, R. Arora, H. V. Scheller et al., Comparison of dilute acid and ionic liquid pretreatment of switchgrass: biomass recalcitrance, delignification and enzymatic saccharification, Bioresour. Technol, vol.101, issue.13, pp.4900-4906, 2010.

H. Li, A. Kankaanpää, H. Xiong, M. Hummel, H. Sixta et al., Thermostabilization of extremophilic Dictyoglomus thermophilum GH11 xylanase by an N-terminal disulfide bridge and the effect of ionic liquid [emim]OAc on the enzymatic performance, Enzyme Microb. Technol, vol.53, issue.6-7, pp.414-419, 2013.

M. Debeire-gosselin, M. Loonis, E. Samain, P. Debeire, J. Visser et al., Purification and properties of 22 kDa endoxylanase excreted by a new strain of thermophilic Bacillus, Xylans and Xylanases, pp.463-466, 1992.

N. Mehmood, E. Husson, C. Jacquard, S. Wewetzer, J. Buchs et al., Impact of two ionic liquids, 1-ethyl-3-methylimidazolium acetate and 1-ethyl3-methylimidazolium methylphosphonate, on Saccharomyces cerevisiae: metabolic, physiologic, and morphological investigations, Biotechnol. Biofuels, vol.8, issue.1, p.17, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01344743

K. Menrad, A. Klein, and S. Kurka, Interest of industrial actors in biorefinery concepts in, Europe. Biofpr, vol.3, issue.3, pp.384-394, 2009.

B. Nidetzky, W. Steiner, and M. Claeyssens, Cellulose hydrolysis by the cellulases from Trichoderma reesei: adsorptions of two cellobiohydrolases, two endocellulases and their core proteins on filter paper and their relation to hydrolysis, Biochem. J, vol.303, pp.817-823, 1994.

S. Octave and D. Thomas, Biorefinery: toward an industrial metabolism, Biochimie, vol.91, issue.6, pp.659-664, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00389168

G. Paës, J. Berrin, and J. Beaugrand, GH11 xylanases: Structure/function/properties relationships and applications, Biotechnol. Adv, vol.30, issue.3, pp.564-592, 2012.

A. Pizzi and N. Eaton, The Structure of Cellulose by Conformational Analysis. 2. The Cellulose Polymer Chain, vol.22, pp.105-137, 1985.

Q. Qing, B. Yang, and C. E. Wyman, Xylooligomers are strong inhibitors of cellulose hydrolysis by enzymes, Bioresour. Technol, vol.101, issue.24, pp.9624-9630, 2010.

L. Qiu-ping, X. Hou, . Li, . Ning, M. -. Zong et al., Ionic liquids from renewable biomaterials: synthesis, characterization and application in the pretreatment of biomass, Green Chem, vol.14, pp.304-307, 2012.

C. Rémond, N. Aubry, D. Crônier, S. Noël, F. Martel et al., Combination of ammonia and xylanase pretreatments: impact on enzymatic xylan and cellulose recovery from wheat straw, Bioresour. Technol, vol.101, issue.17, pp.6712-6717, 2010.

S. Ryu, N. Labbé, and C. Trinh, Simultaneous saccharification and fermentation of cellulose in ionic liquid for efficient production of ?-ketoglutaric acid by Yarrowia lipolytica, Appl. Microbiol. Biotechnol, vol.99, issue.10, pp.4237-4244, 2015.

A. Sadaf, V. K. Morya, and S. K. Khare, Applicability of Sporotrichum thermophile xylanase in the in situ saccharification of wheat straw pre-treated with ionic liquids, Process Biochem, vol.51, issue.12, pp.2090-2096, 2016.

I. P. Samayam, B. L. Hanson, P. Langan, and C. A. Schall, Ionic-liquid induced changes in cellulose structure associated with enhanced biomass hydrolysis, Biomacromolecules, vol.12, issue.8, pp.3091-3098, 2011.

I. P. Samayam and C. A. Schall, Saccharification of ionic liquid pretreated biomass with commercial enzyme mixtures, Bioresour. Technol, vol.101, issue.10, pp.3561-3566, 2010.

K. Shill, S. Padmanabhan, Q. Xin, J. M. Prausnitz, D. S. Clark et al., Ionic liquid pretreatment of cellulosic biomass: enzymatic hydrolysis and ionic liquid recycle, Biotechnol. Bioeng, vol.108, issue.3, pp.511-520, 2011.

H. Song, Y. Gao, Y. Yang, W. Xiao, S. Liu et al., Synergistic effect of cellulase and xylanase during hydrolysis of natural lignocellulosic substrates, Bioresour. Technol, vol.219, pp.710-715, 2016.

D. Xin, M. Yang, Y. Zhang, X. Hou, J. Wu et al., Physicochemical characterization and enzymatic digestibility of Chinese pennisetum pretreated with 1-ethyl-3-methylimidazolium acetate at moderate temperatures, Renewable Energy, vol.91, pp.409-416, 2016.

X. Zhuang, W. Wang, Q. Yu, W. Qi, Q. Wang et al., Liquid hot water pretreatment of lignocellulosic biomass for bioethanol production accompanying with high valuable products, Bioresour. Technol, vol.199, pp.68-75, 2016.