N. E. Boemare, Biology, taxonomy and systematics of Photorhabdus and Xenorhabdus, pp.35-56, 2002.

I. Eleftherianos, J. Marokhazi, P. J. Millichap, A. J. Hodgkinson, A. Sriboonlert et al., Prior infection of Manduca sexta with non-pathogenic Escherichia coli elicits immunity to pathogenic Photorhabdus luminescens: roles of immune-related proteins shown by RNA interference, Insect Biochem Mol Biol, vol.36, issue.6, p.16731347, 2006.

N. R. Waterfield, T. Ciche, and D. Clarke, Photorhabdus and a host of hosts, Annu Rev Microbiol, vol.63, p.19575559, 2009.

K. Brugirard-ricaud, E. Duchaud, A. Givaudan, P. A. Girard, F. Kunst et al., Site-specific antiphagocytic function of the Photorhabdus luminescens type III secretion system during insect colonization, Cell Microbiol, vol.7, issue.3, p.15679839, 2005.

C. P. Silva, N. R. Waterfield, P. J. Daborn, P. Dean, T. Chilver et al., Bacterial infection of a model insect: Photorhabdus luminescens and Manduca sexta, Cell Microbiol, vol.4, issue.6, p.12067318, 2002.

D. Hoffmann, M. Brehelin, and J. A. Hoffmann, Modifications of the hemogram and of the hemocytopoietic tissue of male adults of Locusta migratoria (Orthoptera) after injection of Bacillus thuringiensis, J Invertebr Pathol, vol.24, issue.2, p.4414702, 1974.

J. Hoffmann, Etude de la ré cupération hémocytaire après hé morragies expé rimentales chez l'orthoptère Locusta migratoria, J insect Physiol, vol.15, pp.1375-84, 1969.

R. Ffrench-constant, N. Waterfield, P. Daborn, S. Joyce, H. Bennett et al., Photorhabdus: towards a functional genomic analysis of a symbiont and pathogen, FEMS Microbiol Rev, vol.26, issue.5, p.12586390, 2003.

C. Nielsen-leroux, S. Gaudriault, N. Ramarao, D. Lereclus, and A. Givaudan, How the insect pathogen bacteria Bacillus thuringiensis and Xenorhabdus/Photorhabdus occupy their hosts, Curr Opin Microbiol, vol.15, issue.3, p.22633889, 2012.
URL : https://hal.archives-ouvertes.fr/hal-01004177

S. L. Chiang, J. J. Mekalanos, and D. W. Holden, In vivo genetic analysis of bacterial virulence, Annu Rev Microbiol, vol.53, p.10547688, 1999.

H. Rediers, P. B. Rainey, J. Vanderleyden, D. Mot, and R. , Unraveling the secret lives of bacteria: use of in vivo expression technology and differential fluorescence induction promoter traps as tools for exploring niche-specific gene expression, Microbiol Mol Biol Rev, vol.69, issue.2, p.1197422, 2005.

C. Alvarez-ortega, J. Olivares, and J. L. Martinez, RND multidrug efflux pumps: what are they good for? Front Microbiol, vol.4, p.3564043, 2013.

P. Blanco, S. Hernando-amado, J. A. Reales-calderon, F. Corona, F. Lira et al., Bacterial Multidrug Efflux Pumps: Much More Than Antibiotic Resistance Determinants. Microorganisms, 2016.

, , p.5029519

J. L. Martinez, M. B. Sanchez, L. Martinez-solano, A. Hernandez, L. Garmendia et al., Functional role of bacterial multidrug efflux pumps in microbial natural ecosystems, FEMS Microbiol Rev, vol.33, issue.2, pp.430-479, 2009.

W. G. Miller, J. H. Leveau, and S. E. Lindow, Improved gfp and inaZ broad-host-range promoter-probe vectors, Mol Plant Microbe Interact, vol.13, issue.11, p.11059491, 2000.

R. Fellay, J. Frey, and H. Krisch, Interposon mutagenesis of soil and water bacteria: a family of DNA fragments designed for in vitro insertional mutagenesis of gram-negative bacteria, Gene, vol.52, issue.2-3, p.3038679, 1987.

J. Brillard, E. Duchaud, N. Boemare, F. Kunst, and A. Givaudan, The PhlA hemolysin from the entomopathogenic bacterium Photorhabdus luminescens belongs to the two-partner secretion family of hemolysins, J Bacteriol, vol.184, issue.14, p.12081958, 2002.

F. M. Ausubel, R. Brent, R. E. Kingston, D. D. Moore, J. G. Seidman et al., Current Protocols in Molecular biology, 1993.

B. Duvic, V. Jouan, N. Essa, P. A. Girard, S. Pages et al., Cecropins as a marker of Spodoptera frugiperda immunosuppression during entomopathogenic bacterial challenge, J Insect Physiol, vol.58, issue.6, p.22487443, 2012.

J. B. Andersen, C. Sternberg, L. K. Poulsen, S. P. Bjorn, M. Givskov et al., New unstable variants of green fluorescent protein for studies of transient gene expression in bacteria, Appl Environ Microbiol, vol.64, issue.6, pp.2240-2246, 1998.

E. Duchaud, C. Rusniok, L. Frangeul, C. Buchrieser, A. Givaudan et al., The genome sequence of the entomopathogenic bacterium Photorhabdus luminescens, Nat Biotechnol, vol.21, issue.11, pp.1307-1320, 2003.

T. Joshi and D. Xu, Quantitative assessment of relationship between sequence similarity and function similarity, BMC Genomics, vol.8, p.17620139, 2007.

P. Central and P. , , p.1949826

O. Lomovskaya, M. S. Warren, A. Lee, J. Galazzo, R. Fronko et al., Identification and characterization of inhibitors of multidrug resistance efflux pumps in Pseudomonas aeruginosa: novel agents for combination therapy, Antimicrob Agents Chemother, vol.45, issue.1, p.11120952, 2001.

J. M. Pages, M. Masi, and J. Barbe, Inhibitors of efflux pumps in Gram-negative bacteria, Trends Mol Med, vol.11, issue.8, p.15996519, 2005.

A. Schumacher, P. Steinke, J. A. Bohnert, M. Akova, J. D. Kern et al., Effect of 1-(1-naphthylmethyl)-piperazine, a novel putative efflux pump inhibitor, on antimicrobial drug susceptibility in clinical isolates of Enterobacteriaceae other than Escherichia coli, J Antimicrob Chemother, vol.57, issue.2, pp.344-352, 2006.

G. Jubelin, S. Pages, A. Lanois, M. H. Boyer, S. Gaudriault et al., Studies of the dynamic expression of the Xenorhabdus FliAZ regulon reveal atypical iron-dependent regulation of the flagellin and haemolysin genes during insect infection, Environ Microbiol, vol.13, issue.5, p.21332625, 2011.

D. Ma, D. N. Cook, M. Alberti, N. G. Pon, H. Nikaido et al., Genes acrA and acrB encode a stressinduced efflux system of Escherichia coli, Mol Microbiol, vol.16, issue.1, p.7651136, 1995.

H. Okusu, D. Ma, and H. Nikaido, AcrAB efflux pump plays a major role in the antibiotic resistance phenotype of Escherichia coli multiple-antibiotic-resistance (Mar) mutants, J Bacteriol, vol.178, issue.1, p.177656, 1996.

L. Wang, X. Yang, H. Jian, H. Yang, and D. Huang,

, Wei Sheng Wu Xue Bao, vol.41, issue.6, p.12552836, 2001.

H. B. Bode, Entomopathogenic bacteria as a source of secondary metabolites, Curr Opin Chem Biol, vol.13, issue.2, pp.224-254, 2009.

N. J. Tobias, A. K. Heinrich, H. Eresmann, P. R. Wright, N. Neubacher et al., Photorhabdus-nematode symbiosis is dependent on hfq-mediated regulation of secondary metabolites, Environ Microbiol, vol.19, issue.1, p.27555343, 2017.

J. F. White and . Mst, Defensive Mutualism in Microbial Symbiosis, 2009.

J. Li, G. Chen, H. Wu, and J. M. Webster, Identification of two pigments and a hydroxystilbene antibiotic from Photorhabdus luminescens, Appl Environ Microbiol, vol.61, issue.12, p.167744, 1995.

A. C. Wollenberg, T. Jagdish, G. Slough, M. E. Hoinville, and M. S. Wollenberg, Death Becomes Them: Bacterial Community Dynamics and Stilbene Antibiotic Production in Cadavers of Galleria mellonella Killed by Heterorhabditis and Photorhabdus spp, Appl Environ Microbiol, vol.82, p.5038048, 2016.

D. Shi, R. An, W. Zhang, G. Zhang, and Z. Yu, Stilbene Derivatives from Photorhabdus temperata SN259 and Their Antifungal Activities against Phytopathogenic Fungi, J Agric Food Chem, vol.65, issue.1, p.27960253, 2017.

M. R. Enright and C. T. Griffin, Specificity of association between Paenibacillus spp. and the entomopathogenic nematodes, Heterorhabditis spp. Microb Ecol, vol.48, issue.3, pp.414-437, 2004.

M. R. Enright and C. T. Griffin, Effects of Paenibacillus nematophilus on the entomopathogenic nematode Heterorhabditis megidis, J Invertebr Pathol, vol.88, issue.1, p.15707868, 2005.

L. J. Piddock, Multidrug-resistance efflux pumps-not just for resistance, Nat Rev Microbiol, vol.4, issue.8, p.16845433, 2006.

A. Perez, M. Poza, A. Fernandez, C. Fernandez-mdel, S. Mallo et al., Involvement of the AcrABTolC efflux pump in the resistance, fitness, and virulence of Enterobacter cloacae, Antimicrob Agents Chemother, vol.56, issue.4, p.22290971, 2012.

S. Derzelle, E. Turlin, E. Duchaud, S. Pages, F. Kunst et al., The PhoP-PhoQ two-component regulatory system of Photorhabdus luminescens is essential for virulence in insects, J Bacteriol, vol.186, issue.5, p.344422, 2004.

H. P. Bennett and D. J. Clarke, The pbgPE operon in Photorhabdus luminescens is required for pathogenicity and symbiosis, J Bacteriol, vol.187, issue.1, p.15601690, 2005.

A. Mouammine, S. Pages, A. Lanois, S. Gaudriault, G. Jubelin et al., An antimicrobial peptide-resistant minor subpopulation of Photorhabdus luminescens is responsible for virulence, Sci Rep, vol.7, p.5333078, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01606548

D. E. Ashhurst and A. J. Bailey, Locust collagen: morphological and biochemical characterization, Eur J Biochem, vol.103, issue.1, p.6766861, 1980.

J. Marokhazi, G. Koczan, F. Hudecz, L. Graf, A. Fodor et al., Enzymic characterization with progress curve analysis of a collagen peptidase from an enthomopathogenic bacterium, Photorhabdus luminescens, Biochem J, vol.379, p.1224120, 2004.

J. Marokhazi, K. Lengyel, S. Pekar, G. Felfoldi, A. Patthy et al., Comparison of proteolytic activities produced by entomopathogenic Photorhabdus bacteria: strain-and phase-dependent heterogeneity in composition and activity of four enzymes, Appl Environ Microbiol, vol.70, issue.12, p.535150, 2004.

J. Marokhazi, N. Mihala, F. Hudecz, A. Fodor, L. Graf et al., Cleavage site analysis of a serralysin-like protease, PrtA, from an insect pathogen Photorhabdus luminescens and development of a highly sensitive and specific substrate, FEBS J, vol.274, issue.8, p.17355285, 2007.

P. J. Daborn, N. Waterfield, M. A. Blight, and R. H. Ffrench-constant, Measuring virulence factor expression by the pathogenic bacterium Photorhabdus luminescens in culture and during insect infection, J Bacteriol, vol.183, issue.20, p.11566980, 2001.

C. M. Cabral, A. Cherqui, A. Pereira, and N. Simoes, Purification and characterization of two distinct metalloproteases secreted by the entomopathogenic bacterium Photorhabdus sp. strain Az29, Appl Environ Microbiol, vol.70, issue.7, p.15240252, 2004.

S. Wang, Bacterial Two-Component Systems: Structures and Signaling Mechanisms Protein Phosphorylation in Human Health: IntechOpen, 2012.

E. A. Groisman, Feedback Control of Two-Component Regulatory Systems, Annu Rev Microbiol, vol.70, p.27607549, 2016.

H. Hirakawa, K. Nishino, T. Hirata, and A. Yamaguchi, Comprehensive studies of drug resistance mediated by overexpression of response regulators of two-component signal transduction systems in Escherichia coli, J Bacteriol, vol.185, issue.6, p.12618449, 2003.

M. J. Kwun and H. J. Hong, The activity of glycopeptide antibiotics against resistant bacteria correlates with their ability to induce the resistance system, Antimicrob Agents Chemother, vol.58, issue.10, p.4187914, 2014.

K. Nishino, T. Honda, and A. Yamaguchi, Genome-wide analyses of Escherichia coli gene expression responsive to the BaeSR two-component regulatory system, J Bacteriol, vol.187, issue.5, p.15716448, 2005.

D. Wang and . Fc, The BaeSR regulon is involved in defense against zinc toxicity in E. coli, Metallomics, vol.4, issue.5, pp.372-83, 2013.

T. Kawabata, Y. Yasuhara, M. Ochiai, S. Matsuura, and M. Ashida, Molecular cloning of insect pro-phenol oxidase: a copper-containing protein homologous to arthropod hemocyanin, Proc Natl Acad Sci U S A, vol.92, issue.17, p.41228, 1995.

J. A. Schwartzman and E. G. Ruby, Stress as a Normal Cue in the Symbiotic Environment, Trends Microbiol, vol.24, issue.5, p.4841697, 2016.