J. Bigeard, N. Rayapuram, D. Pflieger, and H. Hirt, Phosphorylation-dependent regulation of plant chromatin and chromatin-associated proteins, Proteomics, vol.14, pp.2127-2140, 2014.
URL : https://hal.archives-ouvertes.fr/hal-02112303

M. C. Rodriguez, M. Petersen, and J. Mundy, Mitogen-activated protein kinase signaling in plants, Annu. Rev. Plant Biol, vol.61, pp.621-649, 2010.

M. Beck, G. Komis, J. Muller, D. Menzel, and J. Samaj, Arabidopsis homologs of nucleus-and phragmoplast-localized kinase 2 and 3 and mitogen-activated protein kinase 4 are essential for microtubule organization, Plant Cell, vol.22, pp.755-771, 2010.

K. Kosetsu, S. Matsunaga, H. Nakagami, J. Colcombet, M. Sasabe et al., The MAP kinase MPK4 is required for cytokinesis in Arabidopsis thaliana, Plant Cell, vol.22, 2010.

H. Wang, N. Ngwenyama, Y. Liu, J. C. Walker, and S. Zhang, Stomatal development and patterning are regulated by environmentally responsive mitogen-activated protein kinases in Arabidopsis, Plant Cell, vol.19, pp.63-73, 2007.

W. Jia, B. Li, S. Li, Y. Liang, X. Wu et al., Mitogen-activated protein kinase cascade MKK7-MPK6 plays important roles in plant development and regulates shoot branching by phosphorylating PIN1 in Arabidopsis, PLos Biol, vol.14, p.1002550, 2016.

J. D. Jones and J. L. Dangl, The plant immune system, Nature, vol.444, pp.323-329, 2006.

J. Bigeard, J. Colcombet, and H. Hirt, signaling mechanisms in pattern-triggered immunity (PTI), Mol. Plant, vol.8, pp.521-539, 2015.
URL : https://hal.archives-ouvertes.fr/hal-02641600

L. Gomez-gomez and T. Boller, FLS2: an LRR receptor-like kinase involved in the perception of the bacterial elicitor flagellin in Arabidopsis, Mol. Cell, vol.5, pp.1003-1011, 2000.

M. Melotto, W. Underwood, and S. Y. He, Role of stomata in plant innate immunity and foliar bacterial diseases, Annu. Rev. Phytopathol, vol.46, pp.101-122, 2008.

K. Sawinski, S. Mersmann, S. Robatzek, and M. Bohmer, Guarding the green: pathways to stomatal immunity, Mol. Plant Microbe Interact, vol.26, pp.626-632, 2013.

R. Huckelhoven, Cell wall-associated mechanisms of disease resistance and susceptibility, Annu. Rev. Phytopathol, vol.45, pp.101-127, 2007.

M. M. Cowan, Plant products as antimicrobial agents, Clin. Microbiol. Rev, vol.12, pp.564-582, 1999.

L. C. Van-loon, M. Rep, and C. M. Pieterse, Significance of inducible defense-related proteins in infected plants, Annu. Rev. Phytopathol, vol.44, pp.135-162, 2006.

I. Ahuja, R. Kissen, and A. M. Bones, Phytoalexins in defense against pathogens, Trends Plant Sci, vol.17, pp.73-90, 2012.

P. Bednarek, Chemical warfare or modulators of defence responses -the function of secondary metabolites in plant immunity, Curr. Opin. Plant Biol, vol.15, pp.407-414, 2012.

T. Asai, G. Tena, J. Plotnikova, M. R. Willmann, W. L. Chiu et al., MAP kinase signalling cascade in Arabidopsis innate immunity, Nature, vol.415, pp.977-983, 2002.

G. Bethke, P. Pecher, L. Eschen-lippold, K. Tsuda, F. Katagiri et al., Activation of the Arabidopsis thaliana mitogen-activated protein kinase MPK11 by the flagellin-derived elicitor peptide, flg22, Mol. Plant Microbe Interact, vol.25, pp.471-480, 2012.

L. Eschen-lippold, G. Bethke, M. A. Palm-forster, P. Pecher, N. Bauer et al., MPK11-a fourth elicitorresponsive mitogen-activated protein kinase in Arabidopsis thaliana, Plant Signal Behav, vol.7, pp.1203-1205, 2012.

M. Gao, J. Liu, D. Bi, Z. Zhang, F. Cheng et al., MEKK1, MKK1/MKK2 and MPK4 function together in a mitogen-activated protein kinase cascade to regulate innate immunity in plants, Cell Res, vol.18, pp.1190-1198, 2008.

Y. Nitta, P. Ding, Y. Zhang, D. Ren, H. Yang et al., Cell death mediated by MAPK is associated with hydrogen peroxide production in Arabidopsis, Plant Signal Behav, vol.9, pp.559-565, 2002.

J. L. Qiu, B. K. Fiil, K. Petersen, H. B. Nielsen, C. J. Botanga et al., Arabidopsis MAP kinase 4 regulates gene expression through transcription factor release in the nucleus, EMBO J, vol.27, pp.2214-2221, 2008.

A. Pitzschke, A. Schikora, and H. Hirt, MAPK cascade signalling networks in plant defence, Curr. Opin. Plant Biol, vol.12, pp.421-426, 2009.

K. Ichimura, C. Casais, S. C. Peck, K. Shinozaki, and K. Shirasu, MEKK1 is required for MPK4 activation and regulates tissue-specific and temperature-dependent cell death in Arabidopsis, J. Biol. Chem, p.281, 2006.

M. Petersen, P. Brodersen, H. Naested, E. Andreasson, U. Lindhart et al., Arabidopsis map kinase 4 negatively regulates systemic acquired resistance, Cell, vol.103, pp.1111-1120, 2000.

M. C. Suarez-rodriguez, L. Adams-phillips, Y. Liu, H. Wang, S. H. Su et al., MEKK1 is required for flg22-induced MPK4 activation in Arabidopsis plants, Plant Physiol, p.143, 2007.

Q. Kong, N. Qu, M. Gao, Z. Zhang, X. Ding et al., The MEKK1-MKK1/MKK2-MPK4 kinase cascade negatively regulates immunity mediated by a mitogenactivated protein kinase kinase kinase in Arabidopsis, Plant Cell, vol.24, pp.2225-2236, 2012.

Z. Zhang, Y. Wu, M. Gao, J. Zhang, Q. Kong et al., Disruption of PAMP-induced MAP kinase cascade by a Pseudomonas syringae effector activates plant immunity mediated by the NB-LRR protein SUMM2, Cell Host Microbe, vol.11, pp.253-263, 2012.

S. H. Su, S. M. Bush, N. Zaman, K. Stecker, M. R. Sussman et al., Deletion of a tandem gene family in Arabidopsis: increased MEKK2 abundance triggers autoimmunity when the MEKK1-MKK1/2-MPK4 signaling cascade is disrupted, Plant Cell, p.25, 2013.

N. Frei-dit-frey, A. V. Garcia, J. Bigeard, R. Zaag, E. Bueso et al., Functional analysis of Arabidopsis immune-related MAPKs uncovers a role for MPK3 as negative regulator of inducible defences, Genome Biol, vol.15, p.87, 2014.
URL : https://hal.archives-ouvertes.fr/hal-02631808

W. Hoehenwarter, M. Thomas, E. Nukarinen, V. Egelhofer, H. Rohrig et al., Identification of novel in vivo MAP kinase substrates in Arabidopsis thaliana through use of tandem metal oxide affinity chromatography, Mol. Cell. Proteomics, vol.12, pp.369-380, 2013.

I. Lassowskat, C. Bottcher, L. Eschen-lippold, D. Scheel, and J. Lee, Sustained mitogen-activated protein kinase activation reprograms defense metabolism and phosphoprotein profile in Arabidopsis thaliana, Front. Plant Sci, vol.5, p.554, 2014.

N. Rayapuram, L. Bonhomme, J. Bigeard, K. Haddadou, C. Przybylski et al., Identification of novel PAMP-triggered phosphorylation and dephosphorylation events in Arabidopsis thaliana by quantitative phosphoproteomic analysis, J. Proteome Res, vol.13, pp.2137-2151, 2014.
URL : https://hal.archives-ouvertes.fr/hal-02112300

H. Nakagami, H. Soukupova, A. Schikora, V. Zarsky, and H. Hirt, A Mitogen-activated protein kinase kinase kinase mediates reactive oxygen species homeostasis in Arabidopsis, J. Biol. Chem, vol.281, pp.38697-38704, 2006.

M. S. Mukhtar, A. R. Carvunis, M. Dreze, P. Epple, J. Steinbrenner et al., Science, vol.333, pp.596-601, 2011.

M. Vandenbogaert, V. Hourdel, O. Jardin-mathe, J. Bigeard, L. Bonhomme et al., Automated phosphopeptide identification using multiple MS/MS fragmentation modes, J. Proteome Res, vol.11, pp.5695-5703, 2012.
URL : https://hal.archives-ouvertes.fr/hal-02644940

M. M. Savitski, S. Lemeer, M. Boesche, M. Lang, T. Mathieson et al., Confident phosphorylation site localization using the Mascot Delta Score, Mol. Cell. Proteomics, vol.10, 2011.

H. J. Cooper, K. Hakansson, A. G. Marshall, R. R. Hudgins, K. F. Haselmann et al., )-X) region in electron capture dissociation provide reliable information on amino acid composition of polypeptides?, Eur. J. Mass Spectrom, vol.8, pp.461-469, 2003.

B. Valot, O. Langella, E. Nano, and M. Zivy, MassChroQ: a versatile tool for mass spectrometry quantification, Proteomics, vol.11, pp.3572-3577, 2011.
URL : https://hal.archives-ouvertes.fr/hal-01481216

J. Cox, M. Y. Hein, C. A. Luber, I. Paron, N. Nagaraj et al., Accurate proteome-wide label-free quantification by delayed normalization and maximal peptide ratio extraction, termed MaxLFQ, Mol. Cell. Proteomics, vol.13, pp.2513-2526, 2014.

D. Schwartz and S. P. Gygi, An iterative statistical approach to the identification of protein phosphorylation motifs from large-scale data sets, Nat. Biotechnol, vol.23, pp.1391-1398, 2005.

A. Franceschini, D. Szklarczyk, S. Frankild, M. Kuhn, M. Simonovic et al., STRING v9.1: protein-protein interaction networks, with increased coverage and integration, Nucleic Acids Res, vol.41, pp.808-815, 2013.

H. Dinkel, K. Van-roey, S. Michael, M. Kumar, B. Uyar et al., ELM 2016 -data update and new functionality of the eukaryotic linear motif resource, Nucleic Acids Res, vol.44, pp.294-300, 2016.

J. Azimzadeh, P. Nacry, A. Christodoulidou, S. Drevensek, C. Camilleri et al., Arabidopsis TONNEAU1 proteins are essential for preprophase band formation and interact with centrin, Plant Cell, vol.20, pp.2146-2159, 2008.
URL : https://hal.archives-ouvertes.fr/hal-00324200

T. Nakagawa, T. Kurose, T. Hino, K. Tanaka, M. Kawamukai et al., Development of series of gateway binary vectors, pGWBs, for realizing efficient construction of fusion genes for plant transformation, J. Biosci. Bioeng, vol.104, pp.34-41, 2007.

S. Berriri, A. V. Garcia, N. Frei-dit-frey, W. Rozhon, S. Pateyron et al., Constitutively active mitogen-activated protein kinase versions reveal functions of Arabidopsis MPK4 in pathogen defense signaling, Plant Cell, vol.24, pp.4281-4293, 2012.
URL : https://hal.archives-ouvertes.fr/hal-02647632

O. Voinnet, S. Rivas, P. Mestre, and D. Baulcombe, An enhanced transient expression system in plants based on suppression of gene silencing by the p19 protein of tomato bushy stunt virus, Plant J, vol.33, pp.949-956, 2003.

D. Schwartz, M. F. Chou, and G. M. Church, Predicting protein post-translational modifications using meta-analysis of proteome scale data sets, Mol. Cell. Proteomics, vol.8, pp.365-379, 2009.

J. F. Harper, H. , and A. , Plants, symbiosis and parasites: a calcium signalling connection, Nat. Rev. Mol. Cell Biol, vol.6, pp.555-566, 2005.

M. Boudsocq, M. R. Willmann, M. Mccormack, H. Lee, L. Shan et al., Differential innate immune signalling via Ca(2?) sensor protein kinases, Nature, vol.464, pp.418-422, 2010.

T. Romeis and M. Herde, From local to global: CDPKs in systemic defense signaling upon microbial and herbivore attack, Curr. Opin. Plant Biol, vol.20, pp.1-10, 2014.

R. Wu, N. Dephoure, W. Haas, E. L. Huttlin, B. Zhai et al., Correct interpretation of comprehensive phosphorylation dynamics requires normalization by protein expression changes, Mol. Cell. Proteomics, vol.10, 2011.

A. P. Oliveira, C. Ludwig, P. Picotti, M. Kogadeeva, R. Aebersold et al., Regulation of yeast central metabolism by enzyme phosphorylation, Mol. Syst. Biol, vol.8, p.623, 2012.

H. Zhang, H. Zhou, L. Berke, A. J. Heck, S. Mohammed et al., Quantitative phosphoproteomics after auxin-stimulated lateral root induction identifies an SNX1 protein phosphorylation site required for growth, Mol. Cell. Proteomics, vol.2, pp.1158-1169, 2013.

. Mapk-group, Mitogen-activated protein kinase cascades in plants: a new nomenclature, Trends Plant Sci, vol.7, pp.301-308, 2002.

T. Hamada, N. Nagasaki-takeuchi, T. Kato, M. Fujiwara, S. Sonobe et al., Purification and characterization of novel microtubule-associated proteins from Arabidopsis cell suspension cultures, Plant Physiol, vol.163, pp.1804-1816, 2013.

S. Abel, K. Bü-rstenbinder, and J. Mü-ller, The emerging function of IQD proteins as scaffolds in cellular signaling and trafficking, Plant Signal Behav, vol.8, p.24369, 2013.

J. W. Vos, L. Pieuchot, J. L. Evrard, N. Janski, M. Bergdoll et al., The plant TPX2 protein regulates prospindle assembly before nuclear envelope breakdown, Plant Cell, vol.20, pp.2783-2797, 2008.
URL : https://hal.archives-ouvertes.fr/hal-00367257

U. Dubiella, H. Seybold, G. Durian, E. Komander, R. Lassig et al., Calcium-dependent protein kinase/NADPH oxidase activation circuit is required for rapid defense signal propagation, Proc. Natl. Acad. Sci. U.S.A, vol.110, pp.8744-8749, 2013.

Y. Ling, S. Alshareef, H. Butt, J. Lozano-juste, L. Li et al., , 2017.

, Pre-mRNA splicing repression triggers abiotic stress signaling in plants, Plant J, vol.89, pp.291-309

S. De-la-fuente-van-bentem, D. Anrather, I. Dohnal, E. Roitinger, E. Csaszar et al., Site-specific phosphorylation profiling of Arabidopsis proteins by mass spectrometry and peptide chip analysis, J. Proteome Res, vol.7, pp.2458-2470, 2008.

J. C. Anderson, S. Bartels, M. A. Gonzalez-besteiro, B. Shahollari, R. Ulm et al., Arabidopsis MAP Kinase Phosphatase 1 (AtMKP1) negatively regulates MPK6-mediated PAMP responses and resistance against bacteria, Plant J, vol.67, pp.258-268, 2011.

S. Bartels, J. C. Anderson, M. A. Gonzalez-besteiro, A. Carreri, H. Hirt et al., MAP kinase phosphatase1 and protein tyrosine phosphatase1 are repressors of salicylic acid synthesis and SNC1-mediated responses in Arabidopsis, Plant Cell, vol.21, pp.2884-2897, 2009.

H. C. Park, E. H. Song, X. C. Nguyen, K. Lee, K. E. Kim et al., , 2011.

, Arabidopsis MAP kinase phosphatase 1 is phosphorylated and activated by its substrate AtMPK6, Plant Cell Rep, vol.30, pp.1523-1531

M. A. Gonzalez-besteiro and R. Ulm, Phosphorylation and stabilization of Arabidopsis MAP kinase phosphatase 1 in response to UV-B stress, J. Biol. Chem, vol.288, pp.480-486, 2013.

M. Janicka-russak, Plant Plasma Membrane H?-ATPase in Adaptation of Plants to Abiotic Stresses, Abiotic Stress Response in Plants, 2011.

J. Liu, J. M. Elmore, A. T. Fuglsang, M. G. Palmgren, B. J. Staskawicz et al., RIN4 functions with plasma membrane H?-ATPases to regulate stomatal apertures during pathogen attack, PLos Biol, vol.7, p.1000139, 2009.

J. Zhao, H. Zhou, M. Zhang, Y. Gao, L. Li et al., Ubiquitin-specific protease 24 negatively regulates abscisic acid signalling in Arabidopsis thaliana, Plant Cell Environ, vol.39, pp.427-440, 2016.

A. Danquah, A. De-zelicourt, M. Boudsocq, J. Neubauer, N. Frei-dit-frey et al., Identification and characterization of an ABA-activated MAP kinase cascade in Arabidopsis thaliana, Plant J, vol.82, pp.232-244, 2015.
URL : https://hal.archives-ouvertes.fr/hal-02636878

S. C. Popescu, G. V. Popescu, S. Bachan, Z. Zhang, M. Gerstein et al., MAPK target networks in Arabidopsis thaliana revealed using functional protein microarrays, Genes Dev, vol.23, pp.80-92, 2009.

C. Sorensson, M. Lenman, J. Veide-vilg, S. Schopper, T. Ljungdahl et al., Determination of primary sequence specificity of Arabidopsis MAPKs MPK3 and MPK6 leads to identification of new substrates, Biochem. J, vol.446, pp.271-278, 2012.

T. Feilner, C. Hultschig, J. Lee, S. Meyer, R. G. Immink et al., High throughput identification of potential Arabidopsis mitogen-activated protein kinases substrates, Mol. Cell. Proteomics, vol.4, pp.1558-1568, 2005.

M. Courcelles, C. Fremin, L. Voisin, S. Lemieux, S. Meloche et al., Phosphoproteome dynamics reveal novel ERK1/2 MAP kinase substrates with broad spectrum of functions, Mol. Syst. Biol, vol.9, p.669, 2013.

A. A. Ludwig, H. Saitoh, G. Felix, G. Freymark, O. Miersch et al., Ethylene-mediated cross-talk between calcium-dependent protein kinase and MAPK signaling controls stress responses in plants, Proc. Natl. Acad. Sci. U.S.A, vol.102, pp.10736-10741, 2005.

J. Xu, J. Xie, C. Yan, X. Zou, D. Ren et al., A chemical genetic approach demonstrates that MPK3/MPK6 activation and NA-DPH oxidase-mediated oxidative burst are two independent signaling events in plant immunity, Plant J, vol.77, pp.222-234, 2014.

S. Ranf, L. Eschen-lippold, P. Pecher, J. Lee, and D. Scheel, Interplay between calcium signalling and early signalling elements during defence responses to microbe-or damage-associated molecular patterns, Plant J, vol.68, pp.100-113, 2011.

F. Meggio, J. W. Perich, E. C. Reynolds, and L. A. Pinna, A synthetic beta-casein phosphopeptide and analogues as model substrates for casein kinase-1, a ubiquitous, phosphate directed protein kinase, FEBS Lett, vol.283, pp.303-306, 1991.

P. Hidalgo, V. Garreton, C. G. Berrios, H. Ojeda, X. Jordana et al., A nuclear casein kinase 2 activity is involved in early events of transcriptional activation induced by salicylic acid in tobacco, Plant Physiol, vol.125, pp.396-405, 2001.

H. G. Kang and D. F. Klessig, Salicylic acid-inducible Arabidopsis CK2-like activity phosphorylates TGA2, Plant Mol. Biol, vol.57, pp.541-557, 2005.

J. Kudla and R. Bock, Lighting the way to protein-protein interactions: recommendations on best practices for bimolecular fluorescence complementation analyses, Plant Cell, vol.28, pp.1002-1008, 2016.

D. Jacobs, D. Glossip, H. Xing, A. J. Muslin, and K. Kornfeld, Multiple docking sites on substrate proteins form a modular system that mediates recognition by ERK MAP kinase, Genes Dev, vol.13, pp.163-175, 1999.

R. M. Biondi and A. R. Nebreda, Signalling specificity of Ser/Thr protein kinases through docking-site-mediated interactions, Biochem. J, vol.372, pp.1-13, 2003.

D. L. Sheridan, Y. Kong, S. A. Parker, K. N. Dalby, and B. E. Turk, Substrate discrimination among mitogen-activated protein kinases through distinct docking sequence motifs, J. Biol. Chem, vol.283, pp.19511-19520, 2008.

S. Berriri, A. V. Garcia, N. F. Frey, W. Rozhon, S. Pateyron et al., Constitutively active mitogen-activated protein kinase versions reveal functions of Arabidopsis MPK4 in pathogen defense signaling, Plant Cell, p.24, 2012.
URL : https://hal.archives-ouvertes.fr/hal-02647632

D. A. Siegele, Universal stress proteins in Escherichia coli, J. Bacteriol, vol.187, pp.6253-6254, 2005.

K. L. Tkaczuk, I. , A. S. Chruszcz, M. Evdokimova, E. Savchenko et al., Structural and functional insight into the universal stress protein family, Evol. Appl, vol.6, pp.434-449, 2013.

M. Lenman, C. Sorensson, A. , and E. , Enrichment of phosphoproteins and phosphopeptide derivatization identify universal stress proteins in elicitor-treated Arabidopsis, Mol. Plant Microbe Interact, vol.21, pp.1275-1284, 2008.

G. Merkouropoulos, E. Andreasson, D. Hess, T. Boller, and S. C. Peck, An Arabidopsis protein phosphorylated in response to microbial elicitation, AtPHOS32, is a substrate of MAP kinases 3 and 6, J. Biol. Chem, vol.283, pp.10493-10499, 2008.

V. Winter and M. T. Hauser, Exploring the ESCRTing machinery in eukaryotes, Trends Plant Sci, vol.11, pp.115-123, 2006.

D. Chandran, Y. C. Tai, G. Hather, J. Dewdney, C. Denoux et al., Temporal global expression data reveal known and novel salicylateimpacted processes and regulators mediating powdery mildew growth and reproduction on Arabidopsis, Plant Physiol, vol.149, pp.1435-1451, 2009.

S. Park, D. M. Rancour, and S. Y. Bednarek, Protein domaindomain interactions and requirements for the negative regulation of Arabidopsis CDC48/p97 by the plant ubiquitin regulatory X (UBX) domain-containing protein, PUX1, J. Biol. Chem, vol.282, pp.5217-5224, 2007.

D. M. Rancour, S. Park, S. D. Knight, and S. Y. Bednarek, Plant UBX domain-containing protein 1, PUX1, regulates the oligomeric structure and activity of arabidopsis CDC48, J. Biol. Chem, vol.279, pp.54264-54274, 2004.

R. Reboul, C. Geserick, M. Pabst, B. Frey, D. Wittmann et al., Down-regulation of UDP-glucuronic acid biosynthesis leads to swollen plant cell walls and severe developmental defects associated with changes in pectic polysaccharides, J. Biol. Chem, vol.286, pp.39982-39992, 2011.

S. Siddique, M. Sobczak, R. Tenhaken, F. M. Grundler, and H. Bohlmann, Cell wall ingrowths in nematode induced syncytia require UGD2 and UGD3, PLoS ONE, vol.7, p.41515, 2012.

D. J. Gawler, L. J. Zhang, M. Reedijk, P. S. Tung, and M. F. Moran, CaLB: a 43 amino acid calcium-dependent membrane/phospholipid binding domain in p120 Ras GTPase-activating protein, Oncogene, vol.10, pp.817-825, 1995.

K. De-silva, B. Laska, C. Brown, H. W. Sederoff, and M. Khodakovskaya, Arabidopsis thaliana calcium-dependent lipid-binding protein (AtCLB): a novel repressor of abiotic stress response, J. Exp. Bot, vol.62, pp.2679-2689, 2011.

T. Wroblewski, K. S. Caldwell, U. Piskurewicz, K. A. Cavanaugh, H. Xu et al., Comparative large-scale analysis of interactions between several crop species and the effector repertoires from multiple pathovars of Pseudomonas and Ralstonia, Plant Physiol, vol.150, pp.1733-1749, 2009.