A. G. Mcdonald and K. F. Tipton, Fifty-five years of Enzyme classification: advances and difficulties, FEBS J, vol.281, pp.583-592, 2014.

V. Lombard, H. Golaconda-ramulu, E. Drula, P. M. Coutinho, and B. Henrissat, The Carbohydrate-active enzymes database (CAZy) in 2013, Nucleic Acids Res, vol.42, pp.490-495, 2014.

D. Ndeh, Complex pectin metabolism by gut bacteria reveals novel catalytic functions, Nature, vol.544, pp.65-70, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01595600

G. Davies and B. Henrissat, Structures and mechanisms of glycosyl hydrolases, Structure, vol.3, pp.853-859, 1995.
URL : https://hal.archives-ouvertes.fr/hal-00310748

B. Henrissat and G. J. Davies, Structural and sequence-based classification of glycoside hydrolases, Curr. Op. Struct. Biol, vol.7, pp.637-644, 1997.
URL : https://hal.archives-ouvertes.fr/hal-00309861

M. R. Stam, E. G. Danchin, C. Rancurel, P. M. Coutinho, and B. Henrissat, Dividing the large glycoside hydrolase family 13 into subfamilies: towards improved functional annotations of ?-amylase-related proteins, Protein Eng Des Sel, vol.19, pp.555-562, 2006.

F. J. St-john, J. M. González, and E. Pozharski, Consolidation of glycosyl hydrolase family 30: a dual domain 4/7 hydrolase family consisting of two structurally distinct groups, FEBS Lett, vol.584, pp.4435-4441, 2010.

H. Aspeborg, P. M. Coutinho, Y. Wang, H. Brumer, and B. Henrissat, Evolution, substrate specificity and subfamily classification of glycoside hydrolase family 5 (GH5), BMC Evol Biol, vol.12, 2012.
URL : https://hal.archives-ouvertes.fr/hal-01785428

K. Mewis, N. Lenfant, V. Lombard, and B. Henrissat, Dividing the large glycoside hydrolase family 43 into subfamilies: a motivation for detailed enzyme characterization, Appl. Environ. Microbiol, vol.82, pp.1686-92, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01439073

V. Lombard, A hierarchical classification of polysaccharide lyases for glycogenomics, Biochem J, vol.432, pp.437-481, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00539724

S. Mathieu, B. Henrissat, F. Labre, G. Skja?k-braek, and W. Helbert, Functional exploration of the polysaccharide lyase family PL6, PLoS One, vol.11, issue.7, p.159415, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01439117

E. C. Martens, N. M. Koropatkin, T. J. Smith, and J. I. Gordon, Complex glycan catabolism by the human gut microbiota: the Bacteroidetes sus-like paradigm, J. Biol. Chem, vol.284, pp.673-697, 2009.

D. W. Cockburn and N. M. Koropatkin, Polysaccharide degradation by the intestinal microbiota and its influence on human health and disease, J Mol Biol, vol.428, pp.3230-3252, 2016.

N. Terrapon, V. Lombard, H. J. Gilbert, and B. Henrissat, Automatic prediction of polysaccharide utilization loci in Bacteroidetes species from the human gut microbiota, Bioinformatics, vol.31, pp.647-655, 2015.

N. Terrapon, PULDB: the expanded database of Polysaccharide Utilization Loci, Nucleic Acids Res, 2017.
URL : https://hal.archives-ouvertes.fr/hal-02094620

P. R. Gómez-pereira, Genomic content of uncultured Bacteroidetes from contrasting oceanic provinces in the North Atlantic Ocean, Environ Microbiol, vol.14, pp.52-66, 2012.

A. J. Mann, The genome of the alga-associated marine Flavobacterium Formosa agariphila KMM 3901T reveals a broad potential for degradation of algal polysaccharides, Appl Environ Microbiol, vol.79, pp.6813-6822, 2013.

A. Kabisch, Functional characterization of polysaccharide utilization loci in the marine Bacteroidetes 'Gramella forsetii' KT0803, ISME J, vol.8, pp.1492-1502, 2014.

R. L. Hahnke, High quality draft genome sequence of Flavobacterium rivuli type strain WB 3.3-2T (DSM 21788T), a valuable source of polysaccharide decomposing enzymes, Stand. Genomic Sci, vol.10, 2015.

P. Xing, Niches of two polysaccharide-degrading Polaribacter isolates from the North Sea during a spring diatom bloom, ISME J, vol.9, pp.1410-1422, 2015.

C. Sun, Isolation and complete genome sequence of Algibacter alginolytica sp. nov., a novel seaweed-degrading Bacteroidetes bacterium with diverse putative polysaccharide utilization loci, Appl Environ Microbiol, vol.82, pp.2975-2987, 2016.

E. Foran, Functional characterization of a novel "ulvan utilization loci" found in Alteromonas sp. LOR genome, Algal Res, vol.25, pp.39-46, 2017.
URL : https://hal.archives-ouvertes.fr/hal-02108411

J. H. Hehemann, Seaweed diet enabled transfer of CAZymes from marine bacteria to Japanese gut bacteria, Nature, vol.464, pp.908-912, 2010.

F. Thomas, Characterization of the first alginolytic operons in a marine bacterium: from their emergence in marine Flavobacteriia to their independent transfers to marine Proteobacteria and human gut Bacteroides, Environ Microbiol, vol.14, pp.2379-2394, 2012.

M. Li, Q. Shang, G. Li, X. Wang, and G. Yu, Degradation of Marine Algae-Derived Carbohydrates by Bacteroidetes Isolated from Human Gut Microbiota, Mar. Drugs, vol.15, 2017.

D. Park, S. Jagtap, and S. K. Nair, Structure of a PL17 family alginate lyase demonstrates functional similarities among exotype depolymerases, J Biol Chem, vol.289, pp.8645-8655, 2014.

K. I. Draget, O. Smidsrød, and G. Skja?k-braek, Alginates from Algae, Biopolymers, vol.6, 2005.

A. Haug, B. Larsen, and O. Smidsrød, Studies of the sequence of uronic acid residues I alginic acid, Acta Chem Scand, vol.21, pp.691-704, 1967.

M. Gimmestad, The Pseudomonas fluorescens AlgG protein, but not its mannuronan C-5-epimerase activity, is needed for alginate polymer formation, J Bacteriol, vol.185, pp.3515-3523, 2003.

O. A. Aarstad, A. Tøndervik, H. Sletta, and G. Skja?k-braek, Alginate sequencing. An analysis of block distribution in alginates using specific alginate degrading enzymes, Biomacromol, vol.13, pp.106-116, 2012.

J. Kraiwattanapong, T. Ooi, and S. Kinoshita, Cloning and sequence analysis of the gene (alyII) coding for an alginate lyase of Pseudomonas sp. OS-ALG-9, Biosci Biotechnol Biochem, vol.61, pp.1853-1857, 1997.

, SCieNtifiC RePoRTS |, vol.8, p.8075, 2018.

H. H. Park, N. Kam, E. Y. Lee, and H. S. Kim, Cloning and characterization of a novel oligoalginate lyase from a newly isolated bacterium Sphingomonas sp, Mar Biotechnol, vol.14, pp.189-202, 2012.

X. M. Yang, S. Y. Li, Y. Wu, W. G. Yu, and F. Han, Cloning and characterization of two thermo-and salt-tolerant oligoalginate lyases from marine bacterium Halomonas sp, FEMS Microbiol Lett, vol.363, 2016.

J. W. Shin, O. K. Lee, H. H. Park, H. S. Kim, and E. Y. Lee, Molecular characterization of a novel oligoalginate lyase consisting of AlgL-and heparinase II/III-like domains from Stenotrophomonas maltophilia KJ-2 and its application to alginate saccharification, Korean J Chem Eng, vol.32, pp.917-924, 2015.

L. C. Macdonald, E. B. Weiler, and B. W. Berger, Engineering broad-spectrum digestion of polyuronides from an exolytic polysaccharide lyase, Biotechnol Biofuels, vol.9, 2016.

L. Liu, The human microbiome: A hot spot of microbial horizontal gene transfer, Genomics, vol.100, pp.265-270, 2012.

L. Voutquenne-nazabadioko, Triterpenoid saponins from the roots of Gypsophila trichotoma Wender, Phytochemistry, vol.90, pp.114-127, 2013.
URL : https://hal.archives-ouvertes.fr/hal-01524710

S. Guo, E. Falk, L. Kenne, B. Rönnberg, and B. G. Sundquist, Triterpenoid saponins containing an acetylated branched D-fucosyl residue from Quillaja saponaria Molina, Phytochemistry, vol.53, pp.861-868, 2000.

W. Xua, Pentacyclic Triterpenoid Saponins from Silene viscidula, Helv Chim Acta, vol.93, pp.2017-2014, 2010.

S. De-marino, Bioactive Asterosaponins from the starfish Luidia quinaria and Psilaster cassiope. Isolation and structure characterization by two-dimensional NMR spectroscopy, J. Nat. Prod, vol.66, pp.515-519, 2003.

S. S. Khan, Urease inhibitory activity of ursane type sulfated saponins from the aerial parts of Zygophyllum fabago Linn, Phytomedicine, vol.21, pp.379-382, 2014.

M. Kanehisa, M. Furumichi, M. Tanabe, Y. Sato, and K. Morishima, KEGG: new perspectives on genomes, pathways, diseases and drugs, Nucleic Acids Res, vol.45, pp.353-361, 2017.

M. Kanehisa, Y. Sato, M. Kawashima, M. Furumichi, and M. Tanabe, KEGG as a reference resource for gene and protein annotation, Nucleic Acids Res, vol.44, pp.457-462, 2016.

R. C. Edgar, MUSCLE: multiple sequence alignment with high accuracy and high throughput, Nucleic Acids Res, vol.32, pp.1792-1797, 2004.

S. Guindon and O. A. Gascuel, Simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood, Systematic Biol, vol.52, pp.696-704, 2003.

J. G. Henikoff, Amino acid substitution matrices from protein blocks, Proc. Natl. Acad. Sci. USA, vol.89, pp.10915-10919, 1992.

N. Wicker, G. R. Perrin, J. C. Thierry, and O. Poch, Secator: A program for inferring protein subfamilies from phylogenetic trees, Mol Biol Evol, vol.18, pp.1435-1441, 2001.

T. N. Petersen, S. Brunak, G. Von-heijne, and H. Nielsen, SignalP 4.0: discriminating signal peptides from transmembrane regions, Nature Meth, vol.8, pp.785-786, 2011.

H. Barreteau, E. Richard, S. Drouillard, E. Samain, and B. Priem, Production of intracellular heparosan and derived oligosaccharides by lyase expression in metabolically engineered E. coli K-12, Carbohydr Res, vol.360, pp.19-24, 2012.

M. Fer, Medium-throughput profiling method for screening polysaccharide-degrading enzymes in complex bacterial extracts, J. Microbiol. Meth, vol.89, pp.222-229, 2012.
URL : https://hal.archives-ouvertes.fr/hal-02108471

S. S. Jagtap, J. H. Hehemann, M. F. Polz, J. K. Lee, and H. M. Zhao, Comparative biochemical characterization of three exolytic oligoalginate lyases from Vibrio splendidus reveals complementary substrate scope, temperature, and pH adaptations, Appl Environ Microbiol, vol.80, pp.4207-4214, 2014.

L. Wang, S. Li, W. Yu, and Q. Gong, Cloning, overexpression and characterization of a new oligoalginate lyase from a marine bacterium. Shewanella sp, Biotechnol Lett, vol.37, pp.665-671, 2015.