G. De-bhowmick, A. K. Sarmah, and R. Sen, Lignocellulosic biorefinery as a model for sustainable development of biofuels and value added products, Biores Technol, vol.247, pp.1144-54, 2018.

F. Cherubini, The biorefinery concept: using biomass instead of oil for producing energy and chemicals, Energy Convers Manage, vol.51, pp.1412-1433, 2010.

V. Lombard, G. Ramulu, H. Drula, E. Coutinho, P. M. Henrissat et al., The carbohydrate-active enzymes database (CAZy) in 2013, Nucleic Acids Res, vol.42, pp.490-495, 2014.

G. Vaaje-kolstad, B. Westereng, S. J. Horn, Z. Liu, H. Zhai et al., An oxidative enzyme boosting the enzymatic conversion of recalcitrant polysaccharides, Science, vol.330, pp.219-241, 2010.

P. V. Harris, D. Welner, K. C. Mcfarland, E. Re, N. Poulsen et al., Stimulation of lignocellulosic biomass hydrolysis by proteins of glycoside hydrolase family 61: structure and function of a large, enigmatic family, Biochemistry, vol.49, pp.3305-3321, 2010.

B. Bissaro, A. Várnai, Å. K. Røhr, and V. Eijsink, oxidoreductases and reactive oxygen species in conversion of lignocellulosic biomass, Microbiol Mol Biol Rev, 2018.

B. Bissaro, A. K. Rohr, G. Muller, P. Chylenski, M. Skaugen et al., Oxidative cleavage of polysaccharides by monocopper enzymes depends on H2O2, Nat Chem Biol, vol.13, pp.1123-1131, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01886447

D. Cannella, K. B. Möllers, N. Frigaard, P. E. Jensen, M. J. Bjerrum et al., Light-driven oxidation of polysaccharides by photosynthetic pigments and a metalloenzyme, Nat Commun, vol.7, 2016.

R. J. Quinlan, M. D. Sweeney, L. Leggio, L. Otten, H. Poulsen et al., Insights into the oxidative degradation of cellulose by a copper metalloenzyme that exploits biomass components, Proc Natl Acad Sci USA, vol.108, pp.15079-84, 2011.

L. Ciano, G. J. Davies, W. B. Tolman, and P. H. Walton, Bracing copper for the catalytic oxidation of C-H bonds, Nature Catalysis, vol.1, p.571, 2018.

C. Bennati-granier, S. Garajova, C. Champion, S. Grisel, M. Haon et al., Substrate specificity and regioselectivity of fungal AA9 lytic polysaccharide monooxygenases secreted by Podospora anserina, Biotechnol Biofuels, vol.8, p.90, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01202474

T. Isaksen, B. Westereng, F. L. Aachmann, J. W. Agger, D. Kracher et al., A C4-oxidizing lytic polysaccharide monooxygenase cleaving both cellulose and cello-oligosaccharides, J Biol Chem, vol.289, pp.2632-2674, 2014.

M. Fanuel, S. Garajova, D. Ropartz, N. Mcgregor, H. Brumer et al., The Podospora anserina lytic polysaccharide monooxygenase PaLPMO9H catalyzes oxidative cleavage of diverse plant cell wall matrix glycans, Biotechnol Biofuels, vol.10, p.63, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01499750

G. Vaaje-kolstad, L. A. Bøhle, S. Gåseidnes, B. Dalhus, M. Bjørås et al., Characterization of the chitinolytic machinery of Enterococcus faecalis V583 and high-resolution structure of its oxidative CBM33 enzyme, J Mol Biol, vol.416, pp.239-54, 2012.

G. R. Hemsworth, B. Henrissat, G. J. Davies, and P. H. Walton, Discovery and characterization of a new family of lytic polysaccharide monooxygenases, Nat Chem Biol, vol.10, p.122, 2014.

L. Lo-leggio, T. J. Simmons, J. Poulsen, K. Frandsen, G. R. Hemsworth et al., Structure and boosting activity of a starch-degrading lytic polysaccharide monooxygenase, Nat Commun, vol.6, p.5961, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01439010

V. Van-vu and M. A. Marletta, Starch-degrading polysaccharide monooxygenases, Cell Mol Life Sci, vol.73, pp.2809-2828, 2016.

M. Couturier, S. Ladevèze, G. Sulzenbacher, L. Ciano, M. Fanuel et al., Lytic xylan oxidases from wood-decay fungi unlock biomass degradation, Nature Chemical Biology, 2018.
URL : https://hal.archives-ouvertes.fr/hal-02094696

F. Sabbadin, G. R. Hemsworth, L. Ciano, B. Henrissat, P. Dupree et al., An ancient family of lytic polysaccharide monooxygenases with roles in arthropod development and biomass digestion, Nat Commun, vol.9, p.756, 2018.
URL : https://hal.archives-ouvertes.fr/hal-02094604

K. S. Johansen, Discovery and industrial applications of lytic polysaccharide mono-oxygenases, Biochem Soc Trans, vol.44, pp.143-152, 2016.

R. Peterson and H. Nevalainen, Trichoderma reesei RUT-C30-thirty years of strain improvement, Microbiology, vol.158, pp.58-68, 2012.

V. Seidl and B. Seiboth, Trichoderma reesei: genetic approaches to improving strain efficiency, Biofuels, vol.1, pp.343-54, 2010.

M. Häkkinen, M. Arvas, M. Oja, N. Aro, M. Penttilä et al., Re-annotation of the CAZy genes of Trichoderma reesei and transcription in the presence of lignocellulosic substrates, Microb Cell Fact, vol.11, p.134, 2012.

D. Martinez, R. M. Berka, B. Henrissat, M. Saloheimo, M. Arvas et al., Genome sequencing and analysis of the biomass-degrading fungus Trichoderma reesei (syn. Hypocrea jecorina), Nat Biotechnol, vol.26, p.553, 2008.

R. H. Bischof, J. Ramoni, and B. Seiboth, Cellulases and beyond: the first 70 years of the enzyme producer Trichoderma reesei, Microb Cell Fact, vol.15, p.106, 2016.

N. Lenfant, M. Hainaut, N. Terrapon, E. Drula, V. Lombard et al., A bioinformatics analysis of 3400 lytic polysaccharide oxidases from family AA9, Carbohydr Res, vol.448, pp.166-74, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01595066

H. Bouws, A. Wattenberg, and H. Zorn, Fungal secretomes-nature's toolbox for white biotechnology, Appl Microbiol Biotechnol, vol.80, p.381, 2008.

D. Cologna, N. Gómez-mendoza, D. P. Zanoelo, F. F. Giannesi, G. C. Guimarães et al., Exploring Trichoderma and Aspergillus secretomes: proteomics approaches for the identification of enzymes of biotechnological interest. Enzyme Microbial Technol, 2017.

J. Berrin, M. Rosso, A. Hachem, and M. , Fungal secretomics to probe the biological functions of lytic polysaccharide monooxygenases, Carbohydr Res, vol.448, pp.155-60, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01595055

L. Nekiunaite, M. Ø. Arntzen, B. Svensson, G. Vaaje-kolstad, A. Hachem et al., Lytic polysaccharide monooxygenases and other oxidative enzymes are abundantly secreted by Aspergillus nidulans grown on different starches, Biotechnol Biofuels, vol.9, p.187, 2016.

J. Berrin, D. Navarro, N. Lopes-ferreira, A. Margeot, P. Coutinho et al., Multi-enzymatic preparation containing the secretome of an Aspergillus japonicus strain (WO2014037925A1), 2015.

I. Herpoël-gimbert, A. Margeot, A. Dolla, G. Jan, D. Mollé et al., Comparative secretome analyses of two Trichoderma reesei RUT-C30 and CL847 hypersecretory strains, Biotechnol Biofuels, vol.1, p.18, 2008.

H. Durand, M. Clanet, and G. Tiraby, Genetic improvement of Trichoderma reesei for large scale cellulase production, Enzyme Microb Technol, vol.10, pp.341-347, 1988.

M. L. Abarca, F. Accensi, J. Cano, and F. J. Cabañes, Taxonomy and significance of black aspergilli, Antonie Van Leeuwenhoek, vol.86, pp.33-49, 2004.

G. P. Voshol, E. Vijgenboom, and P. J. Punt, The discovery of novel LPMO families with a new Hidden Markov model, BMC Res Notes, vol.10, p.105, 2017.

M. I. Butler, J. Gray, T. Goodwin, and R. Poulter, The distribution and evolutionary history of the PRP8 intein, BMC Evol Biol, vol.6, p.42, 2006.

V. Van-vu, W. T. Beeson, E. A. Span, E. R. Farquhar, and M. A. Marletta, A family of starch-active polysaccharide monooxygenases, Proc Natl Acad Sci U S A, vol.111, pp.13822-13829, 2014.

K. Kim, S. G. Rhee, and E. R. Stadtman, Nonenzymatic cleavage of proteins by reactive oxygen species generated by dithiothreitol and iron, J Biol Chem, vol.260, pp.15394-15401, 1985.

H. E. Mcmahon, A. Mangé, N. Nishida, C. Créminon, D. Casanova et al., Cleavage of the amino terminus of the prion protein by reactive oxygen species, J Biol Chem, vol.276, pp.2286-91, 2001.

J. Loose, M. Ø. Arntzen, B. Bissaro, R. Ludwig, V. Eijsink et al., Multipoint precision binding of substrate protects lytic polysaccharide monooxygenases from self-destructive off-pathway processes, Biochemistry, vol.57, pp.4114-4138, 2018.

K. Uchida and S. Kawakishi, Ascorbate-mediated specific oxidation of the imidazole ring in a histidine derivative, Bioorg Chem, vol.17, issue.89, pp.90035-90042, 1989.

E. R. Stadtman, Oxidation of free amino acids and amino acid residues in proteins by radiolysis and by metal-catalyzed reactions, Annu Rev Biochem, vol.62, pp.797-821, 1993.

S. Urresti, A. Cartmell, F. Liu, P. H. Walton, and G. J. Davies, Structural studies of the unusual metal-ion site of the GH124 endoglucanase from Ruminiclostridium thermocellum, Acta Crystallogr F Struct Biol Commun, vol.74, p.42, 2018.

R. Kittl, D. Kracher, D. Burgstaller, D. Haltrich, and R. Ludwig, Production of four Neurospora crassa lytic polysaccharide monooxygenases in Pichia pastoris monitored by a fluorimetric assay, Biotechnol Biofuels, vol.5, p.79, 2012.

M. J. Selig, T. V. Vuong, M. Gudmundsson, Z. Forsberg, B. Westereng et al., Modified cellobiohydrolase-cellulose interactions following treatment with lytic polysaccharide monooxygenase CelS2 (ScLPMO10C) observed by QCM-D, Cellulose, vol.22, pp.2263-70, 2015.

B. Song, B. Li, X. Wang, W. Shen, S. Park et al., Real-time imaging reveals that lytic polysaccharide monooxygenase promotes cellulase activity by increasing cellulose accessibility, Biotechnol Biofuels, vol.11, p.41, 2018.

J. A. Langston, T. Shaghasi, E. Abbate, F. Xu, E. Vlasenko et al., Oxidoreductive cellulose depolymerization by the enzymes cellobiose dehydrogenase and glycoside hydrolase 61, Appl Environ Microbiol, vol.77, pp.7007-7022, 2011.

M. Eibinger, T. Ganner, P. Bubner, S. Ro?ker, D. Kracher et al., Cellulose surface degradation by a lytic polysaccharide monooxygenase and its effect on cellulase hydrolytic efficiency, J Biol Chem, vol.289, pp.35929-35967, 2014.

C. M. Payne, B. C. Knott, H. B. Mayes, H. Hansson, M. E. Himmel et al., Fungal cellulases, Chem Rev, vol.115, pp.1308-448, 2015.

D. M. Petrovi, B. Bissaro, P. Chylenski, M. Skaugen, M. Sørlie et al., Methylation of the N-terminal histidine protects a lytic polysaccharide monooxygenase from auto-oxidative inactivation, Protein Sci, 2018.

D. Navarro, M. Couturier, D. Da-silva, G. G. Berrin, J. Rouau et al., Automated assay for screening the enzymatic Page, vol.15, p.15

. Filiatrault-chastel, 12:55 ? fast, convenient online submission ? thorough peer review by experienced researchers in your field ? rapid publication on acceptance ? support for research data, including large and complex data types ? gold Open Access which fosters wider collaboration and increased citations maximum visibility for your research, Biotechnol Biofuels, 2019.

, Choose BMC and benefit from: release of reducing sugars from micronized biomass, vol.9, 2010.

R. C. Edgar, MUSCLE: multiple sequence alignment with high accuracy and high throughput, Nucleic Acids Res, vol.32, pp.1792-1799, 2004.

S. Henikoff and J. G. Henikoff, Amino acid substitution matrices from protein blocks, Proc Natl Acad Sci USA, vol.89, pp.10915-10924, 1992.

O. Gascuel, BIONJ: an improved version of the NJ algorithm based on a simple model of sequence data, Mol Biol Evol, vol.14, pp.685-95, 1997.
URL : https://hal.archives-ouvertes.fr/lirmm-00730410

D. H. Huson and C. Scornavacca, Dendroscope 3: an interactive tool for rooted phylogenetic trees and networks, Syst Biol, vol.61, pp.1061-1068, 2012.
URL : https://hal.archives-ouvertes.fr/hal-02154987

G. E. Crooks, G. Hon, J. Chandonia, and S. E. Brenner, WebLogo: a sequence logo generator, Genome Res, vol.14, pp.1188-90, 2004.

M. Couturier, M. Haon, P. M. Coutinho, B. Henrissat, L. Lesage-meessen et al., Podospora anserina hemicellulases potentiate the Trichoderma reesei secretome for saccharification of lignocellulosic biomass, Appl Environ Microbiol, vol.77, pp.237-283, 2011.

S. C. Fry, W. S. York, P. Albersheim, A. Darvill, T. Hayashi et al., An unambiguous nomenclature for xyloglucan-derived oligosaccharides, Physiol Plant, vol.89, pp.1-3, 1993.

T. M. Wood, Preparation of crystalline, amorphous, and dyed cellulase substrates, Methods in enzymology, pp.60103-60103, 1988.

B. Westereng, J. W. Agger, S. J. Horn, G. Vaaje-kolstad, F. L. Aachmann et al., Efficient separation of oxidized cello-oligosaccharides generated by cellulose degrading lytic polysaccharide monooxygenases, J Chromatogr A, vol.1271, pp.144-52, 2013.