K. B. Adamo and T. E. Graham, Comparison of traditional measurements with macroglycogen and proglycogen analysis of muscle glycogen, J Appl Physiol, vol.84, pp.908-913, 1998.

F. Bäckhed, H. Ding, T. Wang, L. V. Hooper, G. Y. Koh et al., The gut microbiota as an environmental factor that regulates fat storage, Proc Natl Acad Sci, vol.101, pp.15718-15723, 2004.

F. Bäckhed, J. K. Manchester, C. F. Semenkovich, and J. I. Gordon, Mechanisms underlying the resistance to diet-induced obesity in germ-free mice, Proc Natl Acad Sci, vol.104, pp.979-984, 2007.

L. B. Bindels, R. Beck, O. Schakman, J. C. Martin, D. Backer et al., Restoring specific lactobacilli levels decreases inflammation and muscle atrophy markers in an acute leukemia mouse model, PLoS ONE, vol.7, p.37971, 2012.

L. B. Bindels and N. M. Delzenne, Muscle wasting: the gut microbiota as a new therapeutic target?, The International Journal of Biochemistry & Cell Biology, vol.45, p.2186, 2013.

L. B. Bindels, A. M. Neyrinck, N. Salazar, B. Taminiau, C. Druart et al., Non Digestible Oligosaccharides Modulate the Gut Microbiota to Control the Development of Leukemia and Associated Cachexia in Mice, PLOS ONE, vol.10, p.131009, 2015.

E. G. Bligh and W. J. Dyer, A rapid method of total lipid extraction and purification, Can J Biochem Physiol, vol.37, pp.911-917, 1959.

N. A. Bokulich, S. Subramanian, J. J. Faith, D. Gevers, J. I. Gordon et al., Quality-filtering vastly improves diversity estimates from Illumina amplicon sequencing, Nat Methods, vol.10, pp.57-59, 2013.

J. Boursier, O. Mueller, M. Barret, M. Machado, L. Fizanne et al., The severity of nonalcoholic fatty liver disease is associated with gut dysbiosis and shift in the metabolic function of the gut microbiota, Hepatology, vol.63, pp.764-775, 2016.

F. A. Britto, F. Cortade, Y. Belloum, M. Blaquière, Y. S. Gallot et al., Glucocorticoid-dependent REDD1 expression reduces muscle metabolism to enable adaptation under energetic stress, BMC Biol, vol.16, p.65, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01815521

S. A. Bustin, V. Benes, J. A. Garson, J. Hellemans, J. Huggett et al., The MIQE guidelines: minimum information for publication of quantitative real-time PCR experiments, Clin Chem, vol.55, pp.611-622, 2009.

M. Catoire, A. S. Paraskevopulos, N. Mattijssen, F. Evers-van-gogh, I. Schaart et al., Fatty acid-inducible ANGPTL4 governs lipid metabolic response to exercise, Proc Natl Acad Sci, vol.111, pp.1043-1052, 2014.

H. Chang, O. Kwon, M. Shin, G. M. Kang, Y. H. Leem et al., Role of Angptl4/Fiaf in exercise-induced skeletal muscle AMPK activation, J Appl Physiol, vol.125, pp.715-722, 2018.

Y. Chen, L. Wei, Y. Chiu, Y. Hsu, T. Tsai et al., Lactobacillus plantarum TWK10 Supplementation Improves Exercise Performance and Increases Muscle Mass in Mice, Nutrients, vol.8, p.205, 2016.

A. Clark and N. Mach, The Crosstalk between the Gut Microbiota and Mitochondria during Exercise, Front Physiol, vol.8, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01604194

S. F. Clarke, E. F. Murphy, O. O'sullivan, A. J. Lucey, M. Humphreys et al., Exercise and associated dietary extremes impact on gut microbial diversity, Gut, vol.63, pp.1913-1920, 2014.

J. C. Clemente, L. K. Ursell, L. W. Parfrey, and R. Knight, The Impact of the Gut Microbiota on Human Health: An Integrative View, Cell, vol.148, pp.1258-1270, 2012.

G. A. Cresci, M. Thangaraju, J. D. Mellinger, K. Liu, and V. Ganapathy, Colonic gene expression in conventional and germ-free mice with a focus on the butyrate receptor GPR109A and the butyrate transporter SLC5A8, J Gastrointest Surg, vol.14, pp.449-461, 2010.

R. Demangel, L. Treffel, G. Py, T. Brioche, A. F. Pagano et al., Early structural and functional signature of 3-day human skeletal muscle disuse using the dry immersion model, J Physiol, vol.595, pp.4301-4315, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01603841

F. Derbré, M. Droguet, K. Léon, S. Troadec, J. Pennec et al., Single Muscle Immobilization Decreases Single-Fibre Myosin Heavy Chain Polymorphism: Possible Involvement of p38 and JNK MAP Kinases, PLoS ONE, vol.11, p.158630, 2016.

T. G. Dinan and J. F. Cryan, Gut instincts: microbiota as a key regulator of brain development, ageing and neurodegeneration, The Journal of Physiology, vol.595, pp.489-503, 2017.

B. Egan and J. R. Zierath, Exercise metabolism and the molecular regulation of skeletal muscle adaptation, Cell Metab, vol.17, pp.162-184, 2013.

F. Escudié, L. Auer, M. Bernard, M. Mariadassou, L. Cauquil et al., FROGS: Find, Rapidly, OTUs with Galaxy Solution, Bioinformatics, vol.34, pp.1287-1294, 2018.

W. J. Evans, Skeletal muscle loss: cachexia, sarcopenia, and inactivity, Am J Clin Nutr, vol.91, pp.1123-1127, 2010.

E. E. Fröhlich, A. Farzi, R. Mayerhofer, F. Reichmann, A. Ja?an et al., Cognitive impairment by antibiotic-induced gut dysbiosis: Analysis of gut microbiota-brain communication, Brain Behav Immun, vol.56, pp.140-155, 2016.

J. Furet, O. Firmesse, M. Gourmelon, C. Bridonneau, J. Tap et al., Comparative assessment of human and farm animal faecal microbiota using real-time quantitative PCR, FEMS Microbiol Ecol, vol.68, pp.351-362, 2009.

A. R. Gonglach, C. J. Ade, M. G. Bemben, R. D. Larson, and C. D. Black, Muscle Pain as a Regulator of Cycling Intensity: Effect of Caffeine Ingestion, Med Sci Sports Exerc, vol.48, pp.287-296, 2016.

B. H. Goodpaster, J. He, S. Watkins, and D. E. Kelley, Skeletal muscle lipid content and insulin resistance: evidence for a paradox in endurance-trained athletes, J Clin Endocrinol Metab, vol.86, pp.5755-5761, 2001.

X. Guo, X. Xia, R. Tang, J. Zhou, H. Zhao et al., Development of a real-time PCR method for Firmicutes and Bacteroidetes in faeces and its application to quantify intestinal population of obese and lean pigs, Lett Appl Microbiol, vol.47, pp.367-373, 2008.

T. H. Hansen, R. J. Gøbel, T. Hansen, and O. Pedersen, The gut microbiome in cardio-metabolic health, Genome Med, vol.7, p.33, 2015.

L. Hermansen, B. Ekblom, and B. Saltin, Cardiac output during submaximal and maximal treadmill and bicycle exercise, J Appl Physiol, vol.29, pp.82-86, 1970.

L. Hermansen, E. Hultman, and B. Saltin, Muscle Glycogen during Prolonged Severe Exercise, Acta Physiologica Scandinavica, vol.71, pp.129-139, 1967.

M. J. Houghton, A. Kerimi, V. Mouly, S. Tumova, and G. Williamson, Gut microbiome catabolites as novel modulators of muscle cell glucose metabolism, The FASEB Journal, 2018.

Y. J. Hsu, C. C. Chiu, Y. P. Li, W. C. Huang, Y. T. Huang et al., Effect of intestinal microbiota on exercise performance in mice, J Strength Cond Res, vol.29, pp.552-558, 2015.

R. Jäger, K. A. Shields, R. P. Lowery, D. Souza, E. O. Partl et al., Probiotic Bacillus coagulans GBI-30, 6086 reduces exercise-induced muscle damage and increases recovery, PeerJ, vol.4, p.2276, 2016.

S. Jäger, C. Handschin, J. St-pierre, and B. M. Spiegelman, AMP-activated protein kinase (AMPK) action in skeletal muscle via direct phosphorylation of PGC-1alpha, Proc Natl Acad Sci, vol.104, pp.12017-12022, 2007.

A. Janssen and S. Kersten, Potential mediators linking gut bacteria to metabolic health: a critical view, The Journal of Physiology, vol.595, pp.477-487, 2017.

E. Jansson, Acid soluble and insoluble glycogen in human skeletal muscle, Acta Physiol Scand, vol.113, pp.337-340, 1981.

T. E. Jensen and E. A. Richter, Regulation of glucose and glycogen metabolism during and after exercise, J Physiol, vol.590, pp.1069-1076, 2012.

L. B. Levy and A. A. Welch, Implications of skeletal muscle loss for public health nutrition messages: a brief report, Proc Nutr Soc, vol.74, pp.426-429, 2015.

C. Linninge, S. Ahrné, and G. Molin, Pre-treatment with antibiotics and Escherichia coli to equalize the gut microbiota in conventional mice, Antonie Van Leeuwenhoek, vol.107, pp.149-156, 2015.

R. Lundberg, M. F. Toft, B. August, A. K. Hansen, and C. Hansen, Antibiotic-treated versus germ-free rodents for microbiota transplantation studies, Gut Microbes, vol.7, pp.68-74, 2016.

P. K. Lunde, A. J. Dahlstedt, J. D. Bruton, J. Lännergren, P. Thorén et al., Contraction and intracellular Ca(2+) handling in isolated skeletal muscle of rats with congestive heart failure, Circ Res, vol.88, pp.1299-1305, 2001.

P. E. Macdonald, W. El-kholy, M. J. Riedel, A. Salapatek, P. E. Light et al., The multiple actions of GLP-1 on the process of glucose-stimulated insulin secretion, Diabetes, vol.51, pp.434-442, 2002.

T. Mago? and S. L. Salzberg, FLASH: fast length adjustment of short reads to improve genome assemblies, Bioinformatics, vol.27, pp.2957-2963, 2011.

F. Mahé, T. Rognes, C. Quince, C. De-vargas, and M. Dunthorn, Swarm v2: highly-scalable and highresolution amplicon clustering, PeerJ, vol.3, p.1420, 2015.

M. Martin, Cutadapt removes adapter sequences from high-throughput sequencing reads, EMBnet.journal, vol.17, p.10, 2011.

P. J. Mcmurdie and S. Holmes, phyloseq: an R package for reproducible interactive analysis and graphics of microbiome census data, PLoS ONE, vol.8, p.61217, 2013.

Y. Nakanishi, K. Murashima, H. Ohara, T. Suzuki, H. Hayashi et al., Increase in Terminal Restriction Fragments of Bacteroidetes-Derived 16S rRNA Genes after Administration of Short-Chain Fructooligosaccharides, Appl Environ Microbiol, vol.72, pp.6271-6276, 2006.

I. M. Olfert, R. A. Howlett, K. Tang, N. D. Dalton, Y. Gu et al., Musclespecific VEGF deficiency greatly reduces exercise endurance in mice, J Physiol (Lond), vol.587, pp.1755-1767, 2009.

N. Ørtenblad, H. Westerblad, and J. Nielsen, Muscle glycogen stores and fatigue, J Physiol, vol.591, pp.4405-4413, 2013.

P. Schieber, A. M. Lee, Y. M. Chang, M. W. Leblanc, M. Collins et al., Disease tolerance mediated by commensal E. coli via inflammasome and IGF-1 signaling, Science, vol.350, pp.558-563, 2015.

A. Piedimonte, F. Benedetti, and E. Carlino, Placebo-induced decrease in fatigue: evidence for a central action on the preparatory phase of movement, Eur J Neurosci, vol.41, pp.492-497, 2015.

C. Ploquin, B. Chabi, G. Fouret, B. Vernus, C. Feillet-coudray et al., Lack of myostatin alters intermyofibrillar mitochondria activity, unbalances redox status, and impairs tolerance to chronic repetitive contractions in muscle, Am J Physiol Endocrinol Metab, vol.302, pp.1000-1008, 2012.

C. Quast, E. Pruesse, P. Yilmaz, J. Gerken, T. Schweer et al., The SILVA ribosomal RNA gene database project: improved data processing and web-based tools, Nucleic Acids Res, vol.41, pp.590-596, 2013.

D. H. Reikvam, A. Erofeev, A. Sandvik, V. Grcic, F. L. Jahnsen et al., Depletion of Murine Intestinal Microbiota: Effects on Gut Mucosa and Epithelial Gene Expression, PLoS One, vol.6, 2011.

M. R. Robciuc, P. Skrobuk, A. Anisimov, V. M. Olkkonen, K. Alitalo et al., Angiopoietin-like 4 mediates PPAR delta effect on lipoprotein lipase-dependent fatty acid uptake but not on beta-oxidation in myotubes, PLoS ONE, vol.7, p.46212, 2012.

R. R. Rodrigues, R. L. Greer, X. Dong, K. N. Dsouza, M. Gurung et al., Antibiotic-Induced Alterations in Gut Microbiota Are Associated with Changes in Glucose Metabolism in Healthy Mice, Front Microbiol, vol.8, 2017.

T. Rognes, T. Flouri, B. Nichols, C. Quince, and F. Mahé, VSEARCH: a versatile open source tool for metagenomics, PeerJ, vol.4, p.2584, 2016.

J. G. Ryall, P. Gregorevic, D. R. Plant, M. N. Sillence, and G. S. Lynch, Beta 2-agonist fenoterol has greater effects on contractile function of rat skeletal muscles than clenbuterol, Am J Physiol Regul Integr Comp Physiol, vol.283, pp.1386-1394, 2002.

T. D. Schmittgen and K. J. Livak, Analyzing real-time PCR data by the comparative C(T) method, Nat Protoc, vol.3, pp.1101-1108, 2008.

T. J. Schuijt, J. M. Lankelma, B. P. Scicluna, F. De-sousa-e-melo, J. Roelofs et al., The gut microbiota plays a protective role in the host defence against pneumococcal pneumonia, Gut, vol.65, pp.575-583, 2016.

I. Sekirov, S. L. Russell, L. Antunes, and B. B. Finlay, Gut Microbiota in Health and Disease, Physiological Reviews, vol.90, pp.859-904, 2010.

J. Siddharth, A. Chakrabarti, A. Pannérec, S. Karaz, D. Morin-rivron et al., Aging and sarcopenia associate with specific interactions between gut microbes, serum biomarkers and host physiology in rats, Aging (Albany NY), vol.9, pp.1698-1714, 2017.

C. J. Steves, S. Bird, F. M. Williams, and T. D. Spector, The Microbiome and Musculoskeletal Conditions of Aging: A Review of Evidence for Impact and Potential Therapeutics: MICROBIOME AND MUSCULOSKELETAL CONDITIONS OF AGING, Journal of Bone and Mineral Research, vol.31, pp.261-269, 2016.

R. J. Talmadge and R. R. Roy, Electrophoretic separation of rat skeletal muscle myosin heavy-chain isoforms, J Appl Physiol, vol.75, pp.2337-2340, 1993.

A. Ticinesi, F. Lauretani, C. Milani, A. Nouvenne, C. Tana et al., Aging Gut Microbiota at the Cross-Road between Nutrition, Physical Frailty, and Sarcopenia: Is There a Gut-Muscle Axis, Nutrients, vol.9, 2017.

G. Tolhurst, H. Heffron, Y. S. Lam, H. E. Parker, A. M. Habib et al., Short-Chain Fatty Acids Stimulate Glucagon-Like Peptide-1 Secretion via the G-Protein-Coupled Receptor FFAR2, Diabetes, vol.61, pp.364-371, 2012.

B. J. Varian, S. Goureshetti, T. Poutahidis, J. R. Lakritz, T. Levkovich et al., Beneficial bacteria inhibit cachexia, Oncotarget, vol.7, pp.11803-11816, 2016.

H. Yan, H. Diao, Y. Xiao, W. Li, B. Yu et al., Gut microbiota can transfer fiber characteristics and lipid metabolic profiles of skeletal muscle from pigs to germ-free mice, Sci Rep, vol.6, p.31786, 2016.

L. Yu, J. Wang, S. Wei, and Y. Ni, Host-microbial interactions and regulation of intestinal epithelial barrier function: From physiology to pathology, World J Gastrointest Pathophysiol, vol.3, pp.27-43, 2012.

A. Zarrinpar, A. Chaix, Z. Z. Xu, M. W. Chang, C. A. Marotz et al., Antibioticinduced microbiome depletion alters metabolic homeostasis by affecting gut signaling and colonic metabolism, Nat Commun, vol.9, p.2872, 2018.

, the LSD Fisher post-hoc test *: p?0.05 ATB vs CTL and NAT

*. ,

. ***,