M. Franceagrimer and . Du-blé-dur--récolte, Etudes FranceAgriMer -Céréal, 2017.

G. P. Savill, A. Michalski, S. J. Powers, Y. Wan, P. Tosi et al., Temperature and nitrogen supply interact to determine protein distribution gradients in the wheat grain endosperm, J. Exp. Bot, 2018.

M. Samson, C. André, D. Audigeos, C. Besombes, P. Braun et al., Durum Wheat Pasta with a Good Quality and a Reduced Nitrogen Fertilization: Is it Possible?, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01606910

, European Biostimulants Industry Council, EBIC and Biostimulants in Brief, p.23, 2012.

X. Zhang and R. Schmidt, The impact of growth regulators on the ?-tocopherol status in water-stressed Poa pratensis, Int, pp.1364-1371, 1997.

J. S. Craigie, Seaweed extract stimuli in plant science and agriculture, J. Appl. Phycol, vol.23, p.371, 2011.

P. Du-jardin, Plant biostimulants: definition, concept, main categories and regulation, Sci. Hortic, vol.196, pp.3-14, 2015.

L. Faessel, C. Gomy, N. Nassr, C. Tostivint, C. Hipper et al., Produits de stimulation en agriculture visant à améliorer les fonctionnalités biologiques des sols et des plantes -Etude des connaissances disponibles et recommandations stratégiques, 2014.

S. Arena, C. Ambrosio, M. Vitale, F. Mazzeo, G. Mamone et al., Differential representation of albumins and globulins during grain development in durum wheat and its possible functional consequences, J. Proteomics, vol.162, pp.86-98, 2017.

M. M. Giuliani, C. Palermo, M. A. De-santis, A. Mentana, M. Pompa et al., Differential expression of durum wheat gluten proteome under water stress during grain filling, J. Agric. Food Chem, vol.63, pp.6501-6512, 2015.

G. Visioli, A. Galieni, F. Stagnari, U. Bonas, S. Speca et al., Proteomics of durum wheat grain during transition to conservation agriculture, PLoS One, vol.11, p.156007, 2016.

S. Latique, M. Elouaer, H. Chernane, C. Hannachi, and M. Elkaoua, Effet of seaweed liquid extract of Sargassum vulgare on growth of durum wheat seedlings (Triticum durum L) under salt stress, Int. J. Innov. Appl. Stud, pp.1430-1435, 2014.

M. Popko, I. Michalak, R. Wilk, M. Gramza, K. Chojnacka et al., Effect of the new plant growth biostimulants based on amino acids on yield and grain quality of winter wheat, Molecules, vol.23, 2018.

G. Colla, Y. Rouphael, P. Bonini, and M. Cardarelli, Coating Seeds with Endophytic Fungi Enhances Growth, Nutrient Uptake, Yield and Grain Quality of Winter Wheat, pp.171-189, 2015.

M. Szczepanek, E. Wilczewski, J. Poberezny, E. Wszelaczynska, A. Keutgen et al., Effect of biostimulants and storage on the content of macroelements in storage roots of carrot, J. Elem, vol.20, pp.1021-1031, 2015.

T. Frioni, P. Sabbatini, S. Tombesi, J. Norrie, S. Poni et al., Effects of a biostimulant derived from the brown seaweed Ascophyllum nodosum on ripening dynamics and fruit quality of grapevines, Sci. Hortic, vol.232, pp.97-106, 2018.

W. and S. Norman, The relation between yield and protein in cereal grain, J. Sci. Food Agric, vol.67, pp.309-315, 2006.

P. Du-cheyron, C. Lesouder, and J. Lorgeou, Obtenir un taux de protéines élevé des grains à la récolte, 2014.

R. Ferrise, M. Bindi, and P. Martre, Grain filling duration and glutenin polymerization under variable nitrogen supply and environmental conditions for durum wheat, Field Crops Res, vol.171, pp.23-31, 2015.
URL : https://hal.archives-ouvertes.fr/hal-02641409

M. Yang, J. Dong, W. Zhao, and X. Gao, Characterization of proteins involved in early stage of wheat grain development by iTRAQ, J. Proteomics, vol.136, pp.157-166, 2016.

S. Zhen, X. Deng, M. Zhang, G. Zhu, D. Lv et al., Comparative phosphoproteomic analysis under high-nitrogen fertilizer reveals central phosphoproteins promoting wheat grain starch and protein synthesis, Front. Plant Sci, vol.8, 2017.

A. Troccoli, G. M. Borrelli, P. Vita, C. Fares, and N. D. Fonzo, Mini review: durum wheat quality: a multidisciplinary concept, J. Cereal Sci, vol.32, pp.99-113, 2000.

K. Heinze, A. M. Kiszonas, J. C. Murray, C. F. Morris, and V. Lullien-pellerin, Puroindoline genes introduced into durum wheat reduce milling energy and change milling behavior similar to soft common wheats, J. Cereal Sci, vol.71, pp.183-189, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01837465

J. Brinton, J. Simmonds, and C. Uauy, Ubiquitin-related genes are differentially expressed in isogenic lines contrasting for pericarp cell size and grain weight in hexaploid wheat, BioRxiv, p.175471, 2017.

W. T. Kim, V. R. Franceschi, H. B. Krishnan, and T. W. Okita, Formation of wheat protein bodies: involvement of the golgi apparatus in gliadin transport, Planta, vol.176, pp.173-182, 1988.

P. R. Shewry and A. S. Tatham, Disulphide Bonds in Wheat Gluten Proteins, J. Cereal Sci, vol.25, pp.207-227, 1997.

Z. Flagella, M. M. Giuliani, L. Giuzio, C. Volpi, and S. Masci, Influence of water deficit on durum wheat storage protein composition and technological quality, Eur. J. Agron, vol.33, pp.197-207, 2010.

C. Daniel and E. Triboi, Effects of temperature and nitrogen nutrition on the grain composition of winter wheat: effects on Gliadin content and composition, J. Cereal Sci, vol.32, pp.45-56, 2000.
URL : https://hal.archives-ouvertes.fr/hal-02692584

T. Majoul, E. Bancel, E. Triboï, J. Ben-hamida, and G. Branlard, Proteomic analysis of the effect of heat stress on hexaploid wheat grain: characterization of heat-responsive proteins from non-prolamins fraction, Proteomics, vol.4, pp.505-513, 2004.
URL : https://hal.archives-ouvertes.fr/hal-01189153

M. Pompa, M. M. Giuliani, C. Palermo, F. Agriesti, D. Centonze et al., Comparative analysis of gluten proteins in three durum wheat cultivars by a proteomic approach, J. Agric. Food Chem, vol.61, pp.2606-2617, 2013.

F. M. Dupont and S. B. Altenbach, Molecular and biochemical impacts of environmental factors on wheat grain development and protein synthesis, J. Cereal Sci, vol.38, pp.133-146, 2003.

I. Romeuf, D. Tessier, M. Dardevet, G. Branlard, G. Charmet et al., wDBTF: an integrated database resource for studying wheat transcription factor families, BMC Genomics, vol.11, p.185, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00964124

T. Bonnot, E. Bancel, D. Alvarez, M. Davanture, J. Boudet et al., Grain subproteome responses to nitrogen and sulfur supply in diploid wheat Triticum monococcum ssp. monococcum, Plant J, vol.91, pp.894-910, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01602778

M. Asensi-fabado, A. Amtmann, and G. Perrella, Plant responses to abiotic stress: the chromatin context of transcriptional regulation, Biochim. Biophys. Acta BBA, vol.1860, pp.106-122, 2017.

W. Zhou, Y. Zhu, A. Dong, and W. Shen, Histone H2A/H2B chaperones: from molecules to chromatin-based functions in plant growth and development, Plant J. Cell Mol. Biol, vol.83, pp.78-95, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01171683

C. Andreini, L. Banci, I. Bertini, and A. Rosato, Zinc through the three domains of life, J. Proteome Res, vol.5, pp.3173-3178, 2006.

I. Cakmak, W. H. Pfeiffer, and B. Mcclafferty, REVIEW: biofortification of durum wheat with zinc and Iron, Cereal Chem. J, vol.87, pp.10-20, 2010.

N. J. Bulleid and R. B. Freedman, Defective co-translational formation of disulphide bonds in protein disulphide-isomerase-deficient microsomes, Nature, vol.335, pp.649-651, 1988.

X. Li, Y. Wu, D. Z. Zhang, J. W. Gillikin, R. S. Boston et al., Rice prolamine protein body biogenesis: a BiP-mediated process, Science, vol.262, pp.1054-1056, 1993.

M. A. Vinje, D. K. Willis, S. H. Duke, and C. A. Henson, Differential expression of two ?amylase genes (Bmy1 and Bmy2) in developing and mature barley grain, Planta, vol.233, pp.1001-1010, 2011.

P. Nair, S. Kandasamy, J. Zhang, X. Ji, C. Kirby et al., Transcriptional and metabolomic analysis of Ascophyllum nodosum mediated freezing tolerance in Arabidopsis thaliana, BMC Genomics, vol.13, 2012.

J. L. Araus, J. Bort, R. H. Brown, C. L. Bassett, and N. Cortadellas, Immunocytochemical localization of phosphoenolpyruvate carboxylase and photosynthetic gas-exchange characteristics in ears of Triticum durum Desf, Planta, vol.191, pp.507-514, 1993.

M. González, L. Osuna, C. Echevarría, J. Vidal, and F. J. Cejudo, Expression and localization of Phosphoenolpyruvate carboxylase in developing and germinating

R. Sánchez-gómez, A. Zalacain, F. Pardo, G. L. Alonso, and M. R. Salinas, Moscatel vineshoot extracts as a grapevine biostimulant to enhance wine quality, Food Res. Int, vol.98, pp.40-49, 2017.

Y. Rouphael, G. Colla, M. Giordano, C. El-nakhel, M. C. Kyriacou et al., Foliar applications of a legume-derived protein hydrolysate elicit dose-dependent increases of growth, leaf mineral composition, yield and fruit quality in two greenhouse tomato cultivars, Sci. Hortic, vol.226, pp.353-360, 2017.

G. Colla, M. Cardarelli, P. Bonini, and Y. Rouphael, Foliar applications of protein hydrolysate, plant and seaweed extracts increase yield but differentially modulate fruit quality of greenhouse tomato, HortScience, vol.52, pp.1214-1220, 2017.

M. El-boray, M. Mostafa, E. Salem, and O. A. Sawwah, Improving yield and fruit quality of washington navel orange using foliar applications of some natural biostimulants, J. Plant Prod. Mansoura Univ, vol.6, pp.1317-1332, 2015.

S. Correia, I. Oliveira, F. Queirós, C. Ribeiro, L. Ferreira et al., Preharvest application of seaweed based biostimulant reduced cherry, Procedia Environ. Sci, vol.29, pp.251-252, 2015.

S. Barak, D. Mudgil, and B. S. Khatkar, Biochemical and functional properties of wheat gliadins: a review, Crit. Rev. Food Sci. Nutr, vol.55, pp.357-368, 2015.

T. B. Osborne, The Proteins of the Wheat Kernel, 1907.

E. Triboï, P. Martre, and A. Triboï-blondel, Environmentally-induced changes in protein composition in developing grains of wheat are related to changes in total protein content, J. Exp. Bot, p.1731, 2003.

U. Pechanek, A. Karger, S. Gröger, B. Charvat, G. Schöggl et al., Effect of nitrogen fertilization on quantity of flour protein components, dough properties, and breadmaking quality of wheat (English), Cereal Chem, vol.74, pp.800-805, 1997.

S. Fujihara, H. Sasaki, Y. Aoyagi, and T. Sugahara, Nitrogen-to-protein conversion factors for some cereal products in Japan, J. Food Sci, vol.73, pp.204-209, 2008.

L. Aguirrezábal, P. Martre, G. Pereyra-irujo, M. M. Echarte, and N. Izquierdo, Chapter 17 -improving grain quality: Ecophysiological and modeling tools to develop management and breeding strategies, Crop Physiol, pp.423-465, 2015.

M. S. Costa, M. B. Scholz, and C. M. Franco, Effect of high and low molecular weight glutenin subunits, and subunits of gliadin on physicochemical parameters of different wheat genotypes, Food Sci. Technol, vol.33, pp.163-170, 2013.

W. Liu, Y. Zhang, X. Gao, K. Wang, S. Wang et al., Comparative proteome analysis of glutenin synthesis and accumulation in developing grains between superior and poor quality bread wheat cultivars, J. Sci. Food Agric, vol.92, pp.106-115, 2011.

Y. Song and Q. Zheng, Influence of gliadin removal on strain hardening of hydrated wheat gluten during equibiaxial extensional deformation, J. Cereal Sci, vol.48, pp.58-67, 2008.

F. Barro, L. Rooke, F. Békés, P. Gras, A. S. Tatham et al., Transformation of wheat with high molecular weight subunit genes results in improved functional properties, Nat. Biotechnol, vol.15, pp.1295-1299, 1997.

S. Masci, R. Ovidio, D. Lafiandra, and D. D. Kasarda, A 1B-coded low-molecularweight glutenin subunit associated with quality in durum wheats shows strong similarity to a subunit present in some bread wheat cultivars, Theor. Appl. Genet, vol.100, pp.396-400, 2000.

M. Simoes-larraz and . Ferreira, Dynamique d'assemblage des protéines de réserve et du remplissage du grain de blé dur, p.26, 2011.

C. Ma, J. Zhou, G. Chen, Y. Bian, D. Lv et al., iTRAQ-based quantitative proteome and phosphoprotein characterization reveals the central metabolism changes involved in wheat grain development, BMC Genomics, vol.15, pp.1-38, 2014.

O. Bouacha, L. Rhazi, T. Aussenac, S. Rezgui, and S. Nouaigui, Molecular characterization of storage proteins for selected durum wheat varieties grown in different environments, J. Cereal Sci, vol.61, pp.97-104, 2015.

M. F. Mazzeo, L. D. Stasio, C. Ambrosio, S. Arena, A. Scaloni et al., Identification of early represented gluten proteins during durum wheat grain development, J. Agric. Food Chem, vol.65, pp.3242-3250, 2017.

V. C. Victorio, G. H. Souza, M. C. Santos, A. R. Vega, L. C. Cameron et al., Differential expression of albumins and globulins of wheat flours of different technological qualities revealed by nanoUPLC-UDMSE, Food Chem, vol.239, pp.1027-1036, 2018.

S. B. Altenbach, C. K. Tanaka, W. J. Hurkman, L. C. Whitehand, W. H. Vensel et al., Differential effects of a post-anthesis fertilizer regimen on the wheat flour proteome determined by quantitative 2-DE, Proteome Sci, vol.9, 2011.

J. C. Zadoks, T. T. Chang, and C. F. Konzak, A decimal code for the growth stages of cereals, Weed Res, vol.14, pp.415-421, 1974.

D. A. Baker, D. L. Young, D. R. Huggins, and W. L. Pan, Economically optimal nitrogen, fertilization for yield and protein in hard red spring wheat, Plant Physiol, vol.96, pp.1249-1258, 1998.

M. Darabi and S. Seddigh, Bioinformatic characterization of aspartic protease (AP) enzyme in seed plants, Plant Syst. Evol, vol.301, pp.2399-2417, 2015.

D. R. Davies, The structure and function of the aspartic proteinases, Annu. Rev. Biophys. Biophys. Chem, vol.19, pp.189-215, 1990.

N. D. Rawlings and A. J. Barrett, Families of aspartic peptidases, and those of unknown catalytic mechanism, Methods Enzymol, vol.248, pp.105-120, 1995.

A. Mutlu and S. Gal, Plant aspartic proteinases: enzymes on the way to a function, Physiol. Plant, vol.105, pp.569-576, 1999.

M. G. Guevara, P. Veríssimo, E. Pires, C. Faro, and G. R. Daleo, Potato aspartic proteases: induction, antimicrobial activity and substrate specificity, J. Plant Pathol, vol.86, pp.233-238, 2004.

I. Simões and C. Faro, Structure and function of plant aspartic proteinases, Eur. J. Biochem, vol.271, pp.2067-2075, 2004.

X. Ge, C. Dietrich, M. Matsuno, G. Li, H. Berg et al., An Arabidopsis aspartic protease functions as an anti-cell-death component in reproduction and embryogenesis, EMBO Rep, vol.6, pp.282-288, 2005.

N. D. Rawlings, D. P. Tolle, and A. J. Barrett, MEROPS: the peptidase database, Nucleic Acids Res, vol.32, pp.160-164, 2004.

J. Fürstenberg-hägg, M. Zagrobelny, and S. Bak, Plant Defense against Insect Herbivores, Int. J. Mol. Sci, vol.14, pp.10242-10297, 2013.

S. B. Altenbach, W. H. Vensel, and F. M. Dupont, The spectrum of low molecular weight alpha-amylase/protease inhibitor genes expressed in the US bread wheat cultivar Butte 86, BMC Res. Notes, vol.4, 2011.

D. J. Skylas, J. A. Mackintosh, S. J. Cordwell, D. J. Basseal, B. J. Walsh et al., Proteome approach to the characterisation of protein composition in the developing and mature wheat-grain endosperm, J. Cereal Sci, vol.32, pp.169-188, 2000.

A. Capocchi, M. Cinollo, L. Galleschi, F. Saviozzi, L. Calucci et al., Degradation of gluten by proteases from dry and germinating wheat (Triticum durum) seeds: an in vitro approach to storage protein mobilization, J. Agric. Food Chem, vol.48, pp.6271-6279, 2000.

M. Muramatsu and C. Fukazawa, A high-order structure of plant storage proprotein allows its second conversion by an asparagine-specific cysteine protease, a novel proteolytic enzyme, Eur. J. Biochem, vol.215, pp.123-132, 1993.

H. Harrak, S. Azelmat, E. N. Baker, and Z. Tabaeizadeh, Isolation and characterization of a gene encoding a drought-induced cysteine protease in tomato (Lycopersicon esculentum), Genome, vol.44, pp.368-374, 2001.

M. Koizumi, K. Yamaguchi-shinozaki, H. Tsuji, and K. Shinozaki, Structure and expression of two genes that encode distinct drought-inducible cysteine proteinases in Arabidopsis thaliana, Gene, vol.129, pp.175-182, 1993.

C. Stevens, E. Titarenko, J. A. Hargreaves, and S. J. Gurr, Defence-related gene activation during an incompatible interaction between Stagonospora (Septoria) nodorum and barley (Hordeum vulgare L.) coleoptile cells, Plant Mol. Biol, vol.31, pp.741-749, 1996.

H. J. Linthorst, C. Van-der-does, F. T. Brederode, and J. F. Bol, Circadian expression and induction by wounding of tobacco genes for cysteine proteinase, Plant Mol. Biol, vol.21, pp.685-694, 1993.

R. S. Boston, P. V. Viitanen, and E. Vierling, Molecular chaperones and protein folding in plants, Plant Mol. Biol, vol.32, pp.191-222, 1996.

W. J. Hurkman, F. M. Dupont, S. B. Altenbach, A. Combs, R. Chan et al., Effects of high temperature on protein and mRNA accumulation, Physiol. Plant, vol.103, pp.80-90, 1998.

G. J. Lee and E. Vierling, A small heat shock protein cooperates with heat shock protein 70 systems to reactivate a heat-denatured protein, Plant Physiol, vol.122, pp.189-198, 2000.

W. Sun, M. Van-montagu, and N. Verbruggen, Small heat shock proteins and stress tolerance in plants, Biochim. Biophys. Acta BBA -Gene Struct. Expr, vol.1577, pp.417-424, 2002.

I. Kurek, K. Aviezer, N. Erel, E. Herman, and A. Breiman, The wheat peptidyl prolyl cistrans-isomerase FKBP77 is heat induced and developmentally regulated, Plant Physiol, vol.119, pp.693-704, 1999.

S. B. Altenbach, K. M. Kothari, C. K. Tanaka, and W. J. Hurkman, Genes encoding the PR-4 protein wheatwin are developmentally regulated in wheat grains and respond to high temperatures during grainfill, Plant Sci, vol.173, pp.135-143, 2007.

Z. Pu, G. Chen, J. Wang, Y. Liu, Q. Jiang et al., Characterization and chromosome location of ADP-ribosylation factors (ARFs) in wheat, Pak, J. Biol. Sci. PJBS, vol.17, pp.792-801, 2014.

A. Grover, A. Kapoor, O. S. Lakshmi, S. Agarwal, C. Sahi et al., Understanding molecular alphabets of the plant abiotic stress responses, Curr. Sci, vol.80, pp.206-216, 2001.

K. M. Huda, M. S. Banu, R. Tuteja, and N. Tuteja, Global calcium transducer P-type Ca2+-ATPases open new avenues for agriculture by regulating stress signalling, J. Exp. Bot, vol.64, pp.3099-3109, 2013.

M. R. Mcainsh and J. K. Pittman, Shaping the calcium signature, New Phytol, vol.181, pp.275-294, 2009.

D. Pastore, D. Trono, M. N. Laus, and N. D. Fonzo, Possible plant mitochondria involvement in cell adaptation to drought stressA case study: durum wheat mitochondria, J. Exp. Bot, vol.58, pp.195-210, 2007.

Y. Zhang, J. Pan, X. Huang, D. Guo, H. Lou et al., Differential effects of a post-anthesis heat stress on wheat (Triticum aestivum L.) grain proteome determined by iTRAQ, Sci. Rep, vol.7, 2017.

C. Caruso, G. Chilosi, L. Leonardi, L. Bertini, P. Magro et al., A basic peroxidase from wheat kernel with antifungal activity, Phytochemistry, vol.58, pp.226-232, 2001.

F. Mauch and R. Dudler, Differential induction of distinct glutathione-S-transferases of wheat by xenobiotics and by pathogen attack, Plant Physiol, vol.102, pp.1193-1201, 1993.

A. Nezhadahmadi, Z. H. Prodhan, and G. Faruq, Drought tolerance in wheat, Sci. World J, vol.2013, 2013.

N. Li, S. Zhang, Y. Liang, Y. Qi, J. Chen et al., Label-free quantitative proteomic analysis of drought stress-responsive late embryogenesis abundant proteins in the seedling leaves of two wheat (Triticum aestivum L.) genotypes, J. Proteomics, vol.172, pp.122-142, 2018.

S. A. Campbell and T. J. Close, Dehydrins: genes, proteins, and associations with phenotypic traits, New Phytol, vol.137, pp.61-74, 1997.

Y. Perez-riverol, A. Csordas, J. Bai, M. Bernal-llinares, S. Hewapathirana et al., The PRIDE database and related tools and resources in 2019: improving support for quantification data, Nucleic Acids Res, vol.47, issue.D1, pp.442-450, 2019.