D. M. O'brien, Stable isotope ratios as biomarkers of diet for health research, Annu. Rev. Nutr, vol.35, pp.565-594, 2015.

S. H. Nash, A. R. Kristal, S. E. Hopkins, B. B. Boyer, and D. M. O'brien, Stable isotope models of sugar intake using hair, red blood cells, and plasma, but not fasting plasma glucose, predict sugar intake in a yup'ik study population, J. Nutr, vol.144, pp.75-80, 2014.

K. Choy, S. H. Nash, A. R. Kristal, S. Hopkins, B. B. Boyer et al., The carbon isotope ratio of alanine in red blood cells is a new candidate biomarker of sugar-sweetened beverage intake, J. Nutr, vol.143, pp.878-884, 2013.

P. S. Patel, A. J. Cooper, T. C. O'connell, G. G. Kuhnle, C. K. Kneale et al., Serum carbon and nitrogen stable isotopes as potential biomarkers of dietary intake and their relation with incident type 2 diabetes: The epic-norfolk study, Am. J. Clin. Nutr, vol.100, pp.708-718, 2014.

D. M. O'brien, A. R. Kristal, S. H. Nash, S. E. Hopkins, B. R. Luick et al., A stable isotope biomarker of marine food intake captures associations between n-3 fatty acid intake and chronic disease risk in a yup'ik study population, and detects new associations with blood pressure and adiponectin, J. Nutr, vol.144, pp.706-713, 2014.

T. H. Fakhouri, A. H. Jahren, L. J. Appel, L. W. Chen, R. Alavi et al., Serum carbon isotope values change in adults in response to changes in sugar-sweetened beverage intake, J. Nutr, vol.144, pp.902-905, 2014.

J. H. Mccutchan, W. M. Lewis, C. Kendall, and C. C. Mcgrath, Variation in trophic shift for stable isotope ratios of carbon, nitrogen, and sulfur, vol.102, pp.378-390, 2003.

P. Paneth and M. H. Oleary, Carbon isotope effect on dehydration of bicarbonate ion catalyzed by carbonic-anhydrase, Biochemistry, vol.24, pp.5143-5147, 1985.

S. A. Macko, M. L. Estep, M. H. Engel, and P. E. Hare, Kinetic fractionation of stable nitrogen isotopes during amino-acid transamination, Geochim. Cosmochim. Acta, vol.50, pp.2143-2146, 1986.

N. Poupin, F. Mariotti, J. F. Huneau, D. Hermier, and H. Fouillet, Natural isotopic signatures of variations in body nitrogen fluxes: A compartmental model analysis, PLoS Comput. Biol, vol.10, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01186909

C. Martinez-del-rio and B. O. Wolf, Mass-balance models for animal isotopic ecology. In Physiological and Ecological Adaptations to Feeding in Vertebrates

J. M. Starck and T. Wang, , pp.141-174, 2005.

R. Fernandes, M. J. Nadeau, and P. M. Grootes, Macronutrient-based model for dietary carbon routing in bone collagen and bioapatite, Archaeol. Anthropol. Sci, vol.4, pp.291-301, 2012.

C. M. Kurle, P. L. Koch, B. R. Tershy, and D. A. Croll, The effects of sex, tissue type, and dietary components on stable isotope discrimination factors (delta c-13 and delta n-15) in mammalian omnivores, Isotopes. Environ. Health Stud, vol.50, pp.307-321, 2014.

L. J. Reitsema, Beyond diet reconstruction: Stable isotope applications to human physiology, health, and nutrition, Am. J. Hum. Biol, vol.25, pp.445-456, 2013.

K. J. Petzke, B. T. Fuller, and C. C. Metges, Advances in natural stable isotope ratio analysis of human hair to determine nutritional and metabolic status, Curr. Opin. Clin. Nutr. Metab. Care, vol.13, pp.532-540, 2010.

K. A. Hobson, R. T. Alisauskas, and R. G. Clark, Stable-nitrogen isotope enrichment in avian-tissues due to fasting and nutritional stress-Implications for isotopic analyses of diet, vol.95, pp.388-394, 1993.

P. S. Barboza and K. L. Parker, Body protein stores and isotopic indicators of n balance in female reindeer (rangifer tarandus) during winter, Physiol. Biochem. Zool, vol.79, pp.628-644, 2006.

T. Deschner, B. T. Fuller, V. M. Oelze, C. Boesch, J. J. Hublin et al., Identification of energy consumption and nutritional stress by isotopic and elemental analysis of urine in bonobos (pan paniscus), Rapid Commun. Mass Spectrom, vol.26, pp.69-77, 2012.

T. N. Lee, C. L. Buck, B. M. Barnes, and D. M. O'brien, A test of alternative models for increased tissue nitrogen isotope ratios during fasting in hibernating arctic ground squirrels, J. Exp. Biol, vol.215, pp.3354-3361, 2012.

B. T. Fuller, J. L. Fuller, N. E. Sage, D. A. Harris, T. C. O'connell et al., Nitrogen balance and delta n-15: Why you're not what you eat during pregnancy, Rapid Commun. Mass Spectrom, vol.18, pp.2889-2896, 2004.

K. A. Hatch, M. A. Crawford, A. W. Kunz, S. R. Thomsen, D. L. Eggett et al., An objective means of diagnosing anorexia nervosa and bulimia nervosa using n-15/n-14 and c-13/c-12 ratios in hair, Rapid Commun. Mass Spectrom, vol.20, pp.3367-3373, 2006.

A. M. Mekota, G. Grupe, S. Ufer, and U. Cuntz, Serial analysis of stable nitrogen and carbon isotopes in hair: Monitoring starvation and recovery phases of patients suffering from anorexia nervosa, Rapid Commun. Mass Spectrom, vol.20, pp.1604-1610, 2006.

D. E. Butz, M. E. Cook, H. R. Eghbalnia, F. Assadi-porter, and W. P. Porter, Changes in the natural abundance of (co2)-c-13/(co2)-c-12 in breath due to lipopolysacchride-induced acute phase response, Rapid Commun. Mass Spectrom, vol.23, pp.3729-3735, 2009.

L. D. Whigham, D. E. Butz, L. K. Johnson, D. A. Schoeller, D. H. Abbott et al., Breath carbon stable isotope ratios identify changes in energy balance and substrate utilization in humans, Int. J. Obes, vol.38, pp.1248-1250, 2014.

L. Z. Gannes, C. M. Del-rio, and P. Koch, Natural abundance variations in stable isotopes and their potential uses in animal physiological ecology, Comp. Biochem. Physiol. Part A Mol. Integr. Physiol, vol.119, pp.725-737, 1998.

F. M. Neuberger, E. Jopp, M. Graw, K. Puschel, and G. Grupe, Signs of malnutrition and starvation-reconstruction of nutritional life histories by serial isotopic analyses of hair, Forensic Sci. Int, vol.226, pp.22-32, 2013.

O. L. Mantha, S. Polakof, J. F. Huneau, F. Mariotti, N. Poupin et al., Early changes in tissue amino acid metabolism and nutrient routing in rats fed a high-fat diet: Evidence from natural isotope abundances of nitrogen and carbon in tissue proteins, Br. J. Nutr, vol.119, pp.981-991, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01761202

G. Galmiche, J. F. Huneau, V. Mathe, J. Mourot, N. Simon et al., N-3 fatty acids preserve muscle mass and insulin sensitivity in a rat model of energy restriction, Br. J. Nutr, vol.116, pp.1141-1152, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01488440

R. G. Walsh, S. N. He, and C. T. Yarnes, Compound-specific delta c-13 and delta n-15 analysis of amino acids: A rapid, chloroformate-based method for ecological studies, Rapid Commun. Mass Spectrom, vol.28, pp.96-108, 2014.

Y. Benjamini and Y. Hochberg, Controlling the false discovery rate-A practical and powerful approach to multiple testing, J. R. Stat. Soc. Ser. B Stat. Methodol, vol.57, pp.289-300, 1995.

J. W. Carbone, J. P. Mcclung, and S. M. Pasiakos, Skeletal muscle responses to negative energy balance: Effects of dietary protein, Adv. Nutr, vol.3, pp.119-126, 2012.

J. A. Johnson, C. H. Yu, M. U. Yang, and F. X. Pi-sunyer, Effect of age on protein conservation during very-low-energy diet in obese sprague-dawley rats, Obes. Res, vol.6, pp.448-457, 1998.

L. Chevalier, C. Bos, D. Azzout-marniche, G. Fromentin, L. Mosoni et al., Energy restriction only slightly influences protein metabolism in obese rats, whatever the level of protein and its source in the diet, Int. J. Obes, vol.37, pp.263-271, 2013.
URL : https://hal.archives-ouvertes.fr/hal-01455227

B. F. Miller, M. M. Robinson, D. J. Reuland, J. C. Drake, F. F. Peelor et al., Calorie restriction does not increase short-term or long-term protein synthesis, J. Gerontol. A-Biol, vol.68, pp.530-538, 2013.

A. Zangarelli, E. Chanseaume, B. Morio, C. Brugere, L. Mosoni et al., Synergistic effects of caloric restriction with maintained protein intake on skeletal muscle performance in 21-month-old rats: A mitochondria-mediated pathway, FASEB J, vol.20, pp.2439-2450, 2006.

M. Faure and F. Glomot, Papet, I. Branched-chain amino acid aminotransferase activity decreases during development in skeletal muscles of sheep, J. Nutr, vol.131, pp.1528-1534, 2001.

Q. Yang and R. H. Birkhahn, Branched-chain transaminase and keto acid dehydrogenase activities in burned rats: Evidence for a differential adaptation according to sex, Nutrition, vol.13, pp.640-645, 1997.

K. Hagopian, J. J. Ramsey, and R. Weindruch, Caloric restriction increases gluconeogenic and transaminase enzyme activities in mouse liver, Exp. Gerontol, vol.38, pp.267-278, 2003.

O. E. Owen, K. J. Smalley, D. A. ;-d'alessio, M. A. Mozzoli, and E. K. Dawson, Protein, fat, and carbohydrate requirements during starvation: Anaplerosis and cataplerosis, Am. J. Clin. Nutr, vol.68, pp.12-34, 1998.

C. Jousse, J. Averous, A. Bruhat, V. Carraro, S. Mordier et al., Amino acids as regulators of gene expression: Molecular mechanisms, Biochem. Biophys. Res. Commun, vol.313, pp.447-452, 2004.

G. Cantalapiedra-hijar, I. Ortigues-marty, B. Sepchat, J. Agabriel, J. F. Huneau et al., Diet-animal fractionation of nitrogen stable isotopes reflects the efficiency of nitrogen assimilation in ruminants, Br. J. Nutr, vol.113, pp.1158-1169, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01133635

L. L. Handley and J. A. Raven, The use of natural abundance of nitrogen isotopes in plant physiology and ecology, Plant Cell Environ, vol.15, pp.965-985, 1992.

N. J. Benevenga and K. P. Blemings, Unique aspects of lysine nutrition and metabolism, J. Nutr, vol.137, pp.1610-1615, 2007.

J. G. Webb, M. C. Kiess, and C. C. Chanyan, Malnutrition and the heart, Can. Med. Assoc. J, vol.135, pp.753-758, 1986.

Q. J. Zheng, K. Zhao, X. F. Han, A. F. Huff, Q. Cui et al., Inhibition of ampk accentuates prolonged caloric restriction-induced change in cardiac contractile function through disruption of compensatory autophagy. BBA-Mol. Basis Dis, vol.1852, pp.332-342, 2015.

S. E. Macavoy, L. S. Arneson, and E. Bassett, Correlation of metabolism with tissue carbon and nitrogen turnover rate in small mammals, Oecologia, vol.150, pp.190-201, 2006.

N. Wolf, S. D. Newsome, J. Peters, and M. L. Fogel, Variability in the routing of dietary proteins and lipids to consumer tissues influences tissue-specific isotopic discrimination, Rapid Commun. Mass Spectrom, vol.29, pp.1448-1456, 2015.

L. S. Arneson and S. E. Macavoy, Carbon, nitrogen, and sulfur diet-tissue discrimination in mouse tissues, Can. J. Zool, vol.83, pp.989-995, 2005.

K. Kraeer, L. S. Arneson, and S. E. Macavoy, The intraspecies relationship between tissue turnover and metabolic rate in rats, Ecol. Res, vol.29, pp.937-947, 2014.

C. M. Kurle, Interpreting temporal variation in omnivore foraging ecology via stable isotope modelling, Funct. Ecol, vol.23, pp.733-744, 2009.

S. E. Macavoy, S. A. Macko, and L. S. Arneson, Growth versus metabolic tissue replacement in mouse tissues determined by stable carbon and nitrogen isotope analysis, Can. J. Zool, vol.83, pp.631-641, 2005.

T. N. Palmer, M. A. Caldecourt, K. Snell, and M. C. Sugden, Alanine and inter-organ relationships in branched-chain amino and 2-oxo acid metabolism, Biosci. Rep, vol.5, pp.1015-1033, 1985.

, This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license, © 2019 by the authors. Licensee MDPI