J. Avice, E. , and P. , Leaf senescence and nitrogen remobilization efficiency in oilseed rape (Brassica napus L.), J. Exp. Bot, vol.65, pp.3813-3824, 2014.

S. Balazadeh, J. Schildhauer, W. L. Araújo, S. Munné-bosch, A. R. Fernie et al., Reversal of senescence by N resupply to N-starved Arabidopsis thaliana: transcriptomic and metabolomic consequences, J. Exp. Bot, vol.65, pp.3975-3992, 2014.

F. Bellegarde, A. Gojon, M. , and A. , Signals and players in the transcriptional regulation of root responses by local and systemic N signaling in Arabidopsis thaliana, J. Exp. Bot, vol.68, pp.2553-2565, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01534644

M. M. Bradford, A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding, Anal. Biochem, vol.72, pp.248-254, 1976.

C. A. Carrión, M. L. Costa, D. E. Martínez, C. Mohr, K. Humbeck et al., In vivo inhibition of cysteine proteases provides evidence for the involvement of 'senescence-associated vacuoles' in chloroplast protein degradation during dark-induced senescence of tobacco leaves, J. Exp. Bot, vol.64, pp.4967-4980, 2013.

D. Chrobok, S. R. Law, B. Brouwer, P. Lindén, A. Ziolkowska et al., Dissecting the metabolic role of mitochondria during developmental leaf senescence, Plant Physiol, vol.172, pp.2132-2153, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01494737

S. J. Clough and A. F. Bent, Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana, Plant J. Cell Mol. Biol, vol.16, pp.735-743, 1998.

N. M. Crawford and B. G. Forde, Molecular and developmental biology of inorganic nitrogen nutrition, Arabidopsis Book, vol.1, p.11, 2002.

P. L. Curci, R. Cigliano, D. L. Zuluaga, M. Janni, W. Sanseverino et al., Transcriptomic response of durum wheat to nitrogen starvation, Sci. Rep, vol.7, p.1176, 2017.

M. Desclos, L. Dubousset, P. Etienne, F. Le-caherec, H. Satoh et al., A proteomic profiling approach to reveal a novel role of Brassica napus drought 22 kD/water-soluble chlorophyll-binding protein in young leaves during nitrogen remobilization induced by stressful conditions, Plant Physiol, vol.147, pp.1830-1844, 2008.

M. Desclos, P. Etienne, L. Coquet, T. Jouenne, J. Bonnefoy et al., A combined 15N tracing/proteomics study in Brassica napus reveals the chronology of proteomics events associated with N remobilisation during leaf senescence induced by nitrate limitation or starvation, Proteomics, vol.9, pp.3580-3608, 2009.
URL : https://hal.archives-ouvertes.fr/hal-02337706

M. Desclos-théveniau, L. Coquet, T. Jouenne, E. , and P. , Proteomic analysis of residual proteins in blades and petioles of fallen leaves of Brassica napus, Plant Biol, vol.17, pp.408-418, 2015.

S. Gan and R. M. Amasino, Inhibition of leaf senescence by autoregulated production of cytokinin, Science, vol.270, 1986.

S. Gan and R. M. Amasino, Making sense of senescence (molecular genetic regulation and manipulation of leaf senescence), Plant Physiol, vol.113, pp.313-319, 1997.

L. Gent and B. G. Forde, How do plants sense their nitrogen status?, J. Exp. Bot, vol.68, pp.2531-2539, 2017.

A. Girondé, P. Etienne, J. Trouverie, A. Bouchereau, F. Le-cahérec et al., The contrasting N management of two oilseed rape genotypes reveals the mechanisms of proteolysis associated with leaf N remobilization and the respective contributions of leaves and stems to N storage and remobilization during seed filling, BMC Plant Biol, vol.15, p.59, 2015.

A. Girondé, M. Poret, P. Etienne, J. Trouverie, A. Bouchereau et al., A profiling approach of the natural variability of foliar N remobilization at the rosette stage gives clues to understand the limiting processes involved in the low N use efficiency of winter oilseed rape, J. Exp. Bot, vol.66, pp.2461-2473, 2015.

P. L. Gregersen, Senescence and nutrient remobilization in crop plants, The Molecular and Physiological Basis of Nutrient Use Efficiency in Crops, pp.83-102, 2011.

P. L. Gregersen, A. Culetic, L. Boschian, and K. Krupinska, Plant senescence and crop productivity, Plant Mol. Biol, vol.82, pp.603-622, 2013.

Y. Guo, Z. Cai, and S. Gan, Transcriptome of Arabidopsis leaf senescence, Plant Cell Environ, vol.27, pp.521-549, 2004.

S. Hörtensteiner and U. Feller, Nitrogen metabolism and remobilization during senescence, J. Exp. Bot, vol.53, pp.927-937, 2002.

M. James, M. Poret, C. Masclaux-daubresse, A. Marmagne, L. Coquet et al., SAG12, a major cysteine protease involved in nitrogen mobilization during senescence for seed production in Arabidopsis thaliana, Plant Cell Physiol, vol.59, pp.2052-2063, 2018.

R. A. Jefferson, T. A. Kavanagh, and M. W. Bevan, GUS fusions: betaglucuronidase as a sensitive and versatile gene fusion marker in higher plants, EMBO J, vol.6, pp.3901-3907, 1987.

H. Kim, H. J. Kim, Q. T. Vu, S. Jung, C. Robertson-mcclung et al., Circadian control of ORE1 by PRR9 positively regulates leaf senescence in Arabidopsis, PNAS, vol.115, pp.8448-8453, 2018.

M. Kusaba, A. Tanaka, and R. Tanaka, Stay-green plants: what do they tell us about the molecular mechanism of leaf senescence, Photosynth. Res, vol.117, pp.221-234, 2013.

U. K. Laemmli, Cleavage of structural proteins during the assembly of the head of bacteriophage T4, Nature, vol.227, p.680, 1970.

P. Lainé, A. Ourry, J. Macduff, J. Boucaud, and J. Salette, Kinetic parameters of nitrate uptake by different catch crop species: effects of low temperatures or previous nitrate starvation, Physiol. Plant, vol.88, pp.85-92, 1993.

P. O. Lim, H. J. Kim, N. , and H. G. , Leaf senescence, Annu. Rev. Plant Biol, vol.58, pp.115-136, 2007.

K. J. Livak and T. D. Schmittgen, Analysis of relative gene expression data using real-time quantitative PCR and the 2-CT method, Methods, vol.25, pp.402-408, 2001.

K. N. Lohman, S. Gan, M. C. John, and R. M. Amasino, Molecular analysis of natural leaf senescence in Arabidopsis thaliana, Physiol. Plant, vol.92, pp.322-328, 1994.

C. Masclaux, M. Valadier, N. Brugière, J. Morot-gaudry, and B. Hirel, Characterization of the sink/source transition in tobacco (Nicotiana tabacum L.) shoots in relation to nitrogen management and leaf senescence, Planta. Planta, vol.211, pp.510-518, 2000.

C. Masclaux-daubresse, M. Reisdorf-cren, and M. Orsel, Leaf nitrogen remobilisation for plant development and grain filling, Plant Biol, vol.10, pp.23-36, 2008.

P. Nacry, E. Bouguyon, and A. Gojon, Nitrogen acquisition by roots: physiological and developmental mechanisms ensuring plant adaptation to a fluctuating resource, Plant Soil, vol.370, pp.1-29, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00921012

Y. Noh and R. M. Amasino, Identification of a promoter region responsible for the senescence-specific expression of SAG12, Plant Mol. Biol, vol.41, pp.181-194, 1999.

Y. S. Noh and R. M. Amasino, Regulation of developmental senescence is conserved between Arabidopsis and Brassica napus, Plant Mol. Biol, vol.41, pp.195-206, 1999.

M. S. Otegui, Y. Noh, D. E. Martínez, M. G. Vila-petroff, L. Andrew-staehelin et al., Senescence-associated vacuoles with intense proteolytic activity develop in leaves of Arabidopsis and soybean, Plant J, vol.41, pp.831-844, 2005.

D. L. Parrott, J. M. Martin, and A. M. Fischer, Analysis of barley (Hordeum vulgare) leaf senescence and protease gene expression: a family C1A cysteine protease is specifically induced under conditions characterized by high carbohydrate, but low to moderate nitrogen levels, New Phytol, vol.187, pp.313-331, 2010.

M. B. Peoples and M. J. Dalling, The interplay between proteolysis and amino acid metabolism during senescence and nitrogen reallocation, Senescence and Aging in Plants, pp.181-217, 1988.

M. Poret, B. Chandrasekar, R. A. Van-der-hoorn, A. , and J. , Characterization of senescence-associated protease activities involved in the efficient protein remobilization during leaf senescence of winter oilseed rape, Plant Sci, vol.246, pp.139-153, 2016.
URL : https://hal.archives-ouvertes.fr/hal-02183629

A. Pru?inská, T. Shindo, S. Niessen, F. Kaschani, R. Tóth et al., Major Cys protease activities are not essential for senescence in individually darkened Arabidopsis leaves, BMC Plant Biol, vol.17, p.4, 2017.

L. Rossato, P. Lainé, and A. Ourry, Nitrogen storage and remobilization in Brassica napus L. during the growth cycle: nitrogen fluxes within the plant and changes in soluble protein patterns, J. Exp. Bot, vol.52, pp.1655-1663, 2001.

S. Singh, M. K. Giri, P. K. Singh, A. Siddiqui, and A. K. Nandi, , 2013.

, Down-regulation of OsSAG12-1 results in enhanced senescence and pathogeninduced cell death in transgenic rice plants, J. Biosci, vol.38, pp.583-592

M. Tegeder and C. Masclaux-daubresse, Source and sink mechanisms of nitrogen transport and use, New Phytol, vol.217, pp.35-53, 2017.

M. Tegeder and D. Rentsch, Uptake and partitioning of amino acids and peptides, Mol. Plant, vol.3, pp.997-1011, 2010.

N. Wojciechowska, E. Sobieszczuk-nowicka, and A. Bagniewska-zadworna, Plant organ senescence -regulation by manifold pathways, Plant Biol, vol.20, pp.167-181, 2017.