J. D. Siliciano and R. F. Siliciano, Recent trends in HIV-1 drug resistance, Curr. Opin. Virol, vol.3, pp.487-494, 2013.

J. D. Siliciano and R. F. Siliciano, HIV-1 eradication strategies: design and assessment, Curr. Opin. HIV AIDS, vol.8, pp.318-325, 2013.

J. D. Siliciano and R. F. Siliciano, Recent developments in the search for a cure for HIV-1 infection: targeting the latent reservoir for HIV-1, J. Allergy Clin. Immunol, vol.134, pp.12-19, 2014.

R. F. Siliciano, W. C. Greene, and . Latency, Cold Spring Harb, Perspect. Med, vol.1, p.7096, 2012.

M. A. Wainberg, Perspectives on antiviral drug development, Antiviral Res, vol.81, pp.1-5, 2009.

E. J. Arts and D. J. Hazuda, HIV-1 antiretroviral drug therapy. Cold Spring Harb Perspect, vol.2, p.7161, 2012.

P. Younan, J. Kowalski, and H. P. Kiem, Genetic modification of hematopoietic stem cells as a therapy for HIV/AIDS, Viruses, vol.5, pp.2946-2962, 2013.

W. Zhu, The CRISPR/Cas9 system inactivates latent HIV-1 proviral DNA, Retrovirology, vol.12, p.22, 2015.

F. Christ, Rational design of small-molecule inhibitors of the LEDGF/p75-integrase interaction and HIV replication, Nat. Chem. Biol, vol.6, pp.442-448, 2010.

B. A. Desimmie, LEDGINs inhibit late stage HIV-1 replication by modulating integrase multimerization in the virions, Retrovirology, vol.10, p.57, 2013.

A. Ciuffi and F. D. Bushman, Retroviral DNA integration: HIV and the role of LEDGF/p75, Trends Genet, vol.22, pp.388-395, 2006.

P. Amstutz, Intracellular kinase inhibitors selected from combinatorial libraries of designed ankyrin repeat proteins, J. Biol. Chem, vol.280, pp.24715-24722, 2005.

H. K. Binz, High-affinity binders selected from designed ankyrin repeat protein libraries, Nat. Biotechnol, vol.22, pp.575-582, 2004.

H. K. Binz, P. Amstutz, and A. Plückthun, Engineering novel binding proteins from nonimmunoglobulin domains, Nat. Biotech, vol.23, pp.1257-1268, 2005.

H. K. Binz and A. Plückthun, Engineered proteins as specific binding reagents, Curr. Opin. Biotechnol, vol.16, pp.459-469, 2005.

H. K. Binz, M. T. Stumpp, P. Forrer, P. Amstutz, and A. Plückthun, Designing repeat proteins: well-expressed, soluble and stable proteins from combinatorial libraries of consensus ankyrin repeat proteins, J. Mol. Biol, vol.332, pp.489-503, 2003.

Y. L. Boersma and A. Plückthun, DARPins and other repeat protein scaffolds: advances in engineering and applications, Curr. Opin. Biotechnol, vol.22, pp.849-857, 2011.

R. Tamaskovic, M. Simon, N. Stefan, M. Schwill, and A. Pluckthun, Designed ankyrin repeat proteins (DARPins) from research to therapy, Methods Enzymol, vol.503, pp.101-135, 2012.

U. H. Weidle, J. Auer, U. Brinkmann, G. Georges, and G. Tiefenthaler, The emerging role of new protein scaffold-based agents for treatment of cancer, Cancer Genomics Proteomics, vol.10, pp.155-168, 2013.

A. Schweizer, CD4-specific designed ankyrin repeat proteins are novel potent HIV entry inhibitors with unique characteristics, PLoS Pathog, vol.4, p.1000109, 2008.

S. Nangola, P. Minard, and C. Tayapiwatana, Appraisal of translocation pathways for displaying ankyrin repeat protein on phage particles, Protein Expr. Purif, vol.74, pp.156-161, 2010.

S. Nangola, Antiviral activity of recombinant ankyrin targeted to the capsid domain of HIV-1 Gag polyprotein, Retrovirology, vol.9, p.17, 2012.

S. Sakkhachornphop, . Barbas, . Cr, R. Keawvichit, K. Wongworapat et al., Zinc finger protein designed to target 2-long terminal repeat junctions interferes with human immunodeficiency virus integration, Hum. Gene Ther, vol.23, pp.932-942, 2012.

S. Sakkhachornphop, Designed zinc finger protein interacting with the HIV-1 integrase recognition sequence at 2-LTR-circle junctions, Protein Sci, vol.18, pp.2219-2230, 2009.

W. Khamaikawin, Combined antiviral therapy using designed molecular scaffolds targeting two distinct viral functions, HIV-1 genome integration and capsid assembly, Mol. Ther. -Nucl. Acids, vol.4, p.249, 2015.
URL : https://hal.archives-ouvertes.fr/hal-02192911

A. Chevrel, Specific GFP-binding artificial proteins (?Rep): a new tool for in vitro to live cell applications, SCIenTIFIC REPoRTS |, vol.7, p.223, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01223908

A. Guellouz, Selection of specific protein binders for pre-defined targets from an optimized library of artificial helicoidal repeat proteins (alphaRep), PLoS One, vol.8, p.71512, 2013.

A. Urvoas, Design, production and molecular structure of a new family of artificial alpha-helicoidal repeat proteins (alphaRep) based on thermostable HEAT-like repeats, J. Mol. Biol, vol.404, pp.307-327, 2010.

A. Urvoas, M. Valerio-lepiniec, and P. Minard, Artificial proteins from combinatorial approaches, Trends Biotechnol, vol.30, pp.512-520, 2012.

C. Aiken and C. H. Chen, Betulinic acid derivatives as HIV-1 antivirals, Trends Mol. Med, vol.11, pp.31-36, 2005.

S. Dafonseca, The 3-O-(3?,3?-dimethylsuccinyl) derivative of betulinic acid (DSB) inhibits the assembly of virus-like particles in HIV-1 Gag precursor-expressing cells, Antiviral Ther, vol.12, pp.1185-1203, 2007.
URL : https://hal.archives-ouvertes.fr/hal-02122515

S. Dafonseca, The inhibition of assembly of HIV-1 virus-like particles by 3-O-(3?,3?-dimethylsuccinyl) betulinic acid (DSB) is counteracted by Vif and requires its Zinc-binding domain, Virol. J, vol.5, p.162, 2008.
URL : https://hal.archives-ouvertes.fr/hal-02122505

G. Gonzalez, Characterization of a novel type of HIV-1 particle assembly inhibitor using a quantitative luciferase-Vpr packaging-based assay, PLoS One, vol.6, p.27234, 2011.
URL : https://hal.archives-ouvertes.fr/hal-02122413

J. Zhou, C. H. Chen, and C. Aiken, The sequence of the CA-SP1 junction accounts for the differential sensitivity of HIV-1 and SIV to the small molecule maturation inhibitor 3-O-{3?,3?-dimethylsuccinyl}-betulinic acid, Retrovirology, vol.1, p.15, 2004.

J. Zhou, L. Huang, D. L. Hachey, C. H. Chen, and C. Aiken, Inhibition of HIV-1 maturation via drug association with the viral Gag protein in immature HIV-1 particles, J. Biol. Chem, vol.280, pp.42149-42155, 2005.

T. Dorfman, J. Luban, S. P. Goff, W. A. Haseltine, and H. G. Gottlinger, Mapping of functionally important residues of a cysteinehistidine box in the human immunodeficiency virus type 1 nucleocapsid protein, J. Virol, vol.67, pp.6159-6169, 1993.

J. L. Darlix, Nucleocapsid protein of human immunodeficiency virus as a model protein with chaperoning functions and as a target for antiviral drugs, Adv. Pharmacol, vol.48, pp.345-372, 2000.

J. L. Darlix, J. L. Garrido, N. Morellet, Y. Mély, and H. De-rocquigny, Properties, functions, and drug targeting of the multifunctional nucleocapsid protein of the human immunodeficiency virus, Adv. Pharmacol, vol.55, pp.299-346, 2007.
URL : https://hal.archives-ouvertes.fr/hal-00667232

D. Grohmann, J. Godet, Y. Mély, J. L. Darlix, and T. Restle, HIV-1 nucleocapsid traps reverse transcriptase on nucleic acid substrates, Biochemistry, vol.47, pp.12230-12240, 2008.
URL : https://hal.archives-ouvertes.fr/hal-00339361

J. G. Levin, J. Guo, I. Rouzina, and K. Musier-forsyth, Nucleic acid chaperone activity of HIV-1 nucleocapsid protein: critical role in reverse transcription and molecular mechanism, Prog. Nucleic Acid Res. Mol. Biol, vol.80, pp.217-286, 2005.

S. Breuer, M. W. Chang, J. Yuan, and B. E. Torbett, Identification of HIV-1 inhibitors targeting the nucleocapsid protein, J. Med. Chem, vol.55, pp.4968-4977, 2012.

H. De-rocquigny, Targeting the viral nucleocapsid protein in anti-HIV-1 therapy, Mini-Rev. Med. Chem, vol.8, pp.24-35, 2008.
URL : https://hal.archives-ouvertes.fr/hal-00246512

D. Garg and B. E. Torbett, Advances in targeting nucleocapsid-nucleic acid interactions in HIV-1 therapy, Virus Res, vol.193, pp.135-143, 2014.

M. Mori, Nucleocapsid protein: a desirable target for future therapies against HIV-1, Curr. Top. Microbiol. Immunol, vol.389, pp.53-92, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01186130

A. G. Stephen, Identification of HIV-1 nucleocapsid protein: nucleic acid antagonists with cellular anti-HIV activity, Biochem. Biophys. Res. Commun, vol.296, pp.1228-1237, 2002.

V. Dussupt, The nucleocapsid region of HIV-1 Gag cooperates with the PTAP and LYPXnL late domains to recruit the cellular machinery necessary for viral budding, PLoS Pathog, vol.5, p.1000339, 2009.

S. Popov, E. Popova, M. Inoue, and H. G. Göttlinger, Human immunodeficiency virus type 1 Gag engages the Bro1 domain of ALIX/ AIP1 through the nucleocapsid, J Virol, vol.82, pp.1389-1398, 2008.

B. Gay, J. Tournier, N. Chazal, C. Carrière, and P. Boulanger, Morphopoietic determinants of HIV-1 GAG particles assembled in baculovirus-infected cells, Virology, vol.247, pp.160-169, 1998.
URL : https://hal.archives-ouvertes.fr/hal-02147228

D. Gheysen, Assembly and release of HIV-1 precursor Pr55gag virus-like particles from recombinant baculovirus-infected insect cells, Cell, vol.59, pp.103-112, 1989.

M. Royer, Functional domains of HIV-1 gag-polyprotein expressed in baculovirus-infected cells, Virology, vol.184, pp.417-422, 1991.

M. Royer, S. S. Hong, B. Gay, M. Cerutti, and P. Boulanger, Expression and extracellular release of human immunodeficiency virus type 1 Gag precursors by recombinant baculovirus-infected cells, J. Virol, vol.66, pp.3230-3235, 1992.

F. H. Santiago-tirado and T. L. Doering, All about that fat: Lipid modification of proteins in Cryptococcus neoformans, J. Microbiol, vol.54, pp.212-222, 2016.

F. Bachand, X. J. Yao, M. Hrimech, N. Rougeau, and E. A. Cohen, Incorporation of Vpr into human immunodeficiency virus type 1 requires a direct interaction with the p6 domain of the p55 gag precursor, J. Biol. Chem, vol.274, pp.9083-9091, 1999.

Y. Jenkins, Biochemical analyses of the interactions between human immunodeficiency virus type 1 Vpr andp6(Gag), J. Virol, vol.75, pp.10537-10542, 2001.

J. A. Thomas, D. E. Ott, and R. J. Gorelick, Efficiency of human immunodeficiency virus type 1 postentry infection processes: evidence against disproportionate numbers of defective virions, J. Virol, vol.81, pp.4367-4370, 2007.

G. Mirambeau, S. Lyonnais, and R. J. Gorelick, Features, processing states, and heterologous protein interactions in the modulation of the retroviral nucleocapsid protein function, RNA Biol, vol.7, pp.724-734, 2010.

S. C. Pettit, N. Sheng, R. Tritch, S. Erickson-viitanen, and R. Swanstrom, The regulation of sequential processing of HIV-1 Gag by the viral protease, Adv. Exp. Med. Biol, vol.436, pp.15-25, 1998.

K. Kitidee, Expedient screening for HIV-1 protease inhibitors using a simplified immunochromatographic assay, J. Chromatogr. B Analyt. Technol. Biomed. Life Sci, vol.1021, pp.153-158, 2016.

K. Kitidee, A drug discovery platform: a simplified immunoassay for analyzing HIV protease activity, J. Virol. Methods, vol.186, pp.21-29, 2012.

V. S. Lee, Pairwise decomposition of residue interaction energies of single chain Fv with HIV-1p17 epitope variants, Mol. Immunol, vol.47, pp.982-990, 2010.

A. J. Marozsan, Relationships between infectious titer, capsid protein levels, and reverse transcriptase activities of diverse human immunodeficiency virus type 1 isolates, J. Virol, vol.78, pp.11130-11141, 2004.

D. J. Segal, Attenuation of HIV-1 replication in primary human cells with a designed zinc finger transcription factor, J. Biol. Chem, vol.279, pp.14509-14519, 2004.

C. Ochsenbauer-jambor, J. Jones, M. Heil, K. P. Zammit, and O. Kutsch, T-cell line for HIV drug screening using GFP as a quantitative marker of HIV-1 replication, Biotechniques, vol.40, pp.91-100, 2006.

J. L. Newman, E. W. Butcher, D. T. Patel, Y. Mikhaylenko, and M. F. Summers, Flexibility in the p2 domain of the HIV-1Gag polyprotein, Protein Science, vol.13, pp.2101-2107, 2004.

D. K. Worthylake, H. Wang, S. Yoo, W. I. Sundquist, and C. P. Hill, Structures of the HIV-1 capsid protein dimerization domain at 2.6 A° resolution, Acta Cryst., Section D, Biol. Cryst, vol.55, pp.85-92, 1999.

S. A. Datta, Dimerization of the SP1 region of HIV-1 Gag induces a helical conformation and association into helical bundles: Implications for particle assembly, J Virol, vol.90, pp.1773-1787, 2015.

S. A. Datta, On the role of the SP1 domain in HIV-1 particle assembly: a molecular switch?, J. Virol, vol.85, pp.4111-4121, 2011.

, SCIenTIFIC REPoRTS |, vol.7

J. M. Wagner, Crystal structure of an HIV assembly and maturation switch. eLife 5, e17063, 2016.

N. Morellet, Determination of the structure of the nucleocapsid protein NCp7 from the human immunodeficiency virus type 1 by 1H NMR, EMBO J, vol.11, pp.3059-3065, 1992.

N. Morellet, H. Meudal, S. Bouaziz, and B. P. Roques, Structure of the zinc finger domain encompassing residues 13-51 of the nucleocapsid protein from simian immunodeficiency virus, Biochem. J, vol.393, pp.725-732, 2006.
URL : https://hal.archives-ouvertes.fr/hal-02122534

L. Didierlaurent, L. Houzet, Z. Morichaud, J. Darlix, and M. Mougel, The conserved N-terminal basic residues and zinc-finger motifs of HIV-1 nucleocapsid restrict the viral cDNA synthesis during virus formation and maturation, Nucleic Acids Res, vol.36, pp.4745-4753, 2008.
URL : https://hal.archives-ouvertes.fr/hal-00311686

M. T. Burniston, A. Cimarelli, J. Colgan, S. P. Curtis, and J. Luban, Human immunodeficiency virus type 1 Gag polyprotein multimerization requires the nucleocapsid domain and RNA and is promoted by the capsid-dimer interface and the basic region of matrix protein, J. Virol, vol.73, pp.8527-8540, 1999.
URL : https://hal.archives-ouvertes.fr/hal-02323113

A. Cimarelli, S. Sandin, S. Höglund, and J. Luban, Basic residues in human immunodeficiency virus type 1 nucleocapsid promote virion assembly via interaction with RNA, J. Virol, vol.74, pp.3046-3057, 2000.
URL : https://hal.archives-ouvertes.fr/hal-02323109

J. Hendrix, Live-cell observation of cytosolic HIV-1 assembly onset reveals RNA-interacting Gag oligomers, J. Cell Biol, vol.210, pp.629-646, 2015.

C. H. Swan, T-cell protection and enrichment through lentiviral CCR5 intrabody gene delivery, Gene Ther, vol.13, pp.1480-1492, 2006.

S. S. Hong and P. Boulanger, Protein ligands of human Adenovirus type 2 outer capsid identified by biopanning of a phage-displayed peptide library on separate domains of WT and mutant penton capsomers, EMBO J, vol.14, pp.4714-4727, 1995.

S. S. Hong, L. Karayan, J. Tournier, D. T. Curiel, and P. A. Boulanger, Adenovirus type 5 fiber knob binds to MHC class I alpha2 domain at the surface of human epithelial and B lymphoblastoid cells, EMBO J, vol.16, pp.2294-2306, 1997.

I. Huvent, Interaction and co-encapsidation of HIV-1 Vif and Gag recombinant proteins, J. Gen. Virol, vol.79, pp.1069-1081, 1998.

M. A. Brockman, Early selection in Gag by protective HLA alleles contributes to reduced HIV-1 replication capacity that may be largely compensated for in chronic infection, J. Virol, vol.84, pp.11937-11949, 2010.

M. A. Brockman, G. O. Tanz, B. D. Walker, and T. M. Allen, Use of a novel GFP reporter cell line to examine replication capacity of CXCR4-and CCR5-tropic HIV-1 by flow cytometry, J. Virol. Methods, vol.131, pp.134-142, 2006.

J. K. Wright, Gag-protease-mediated replication capacity in HIV-1 subtype C chronic infection: associations with HLA type and clinical parameters, J. Virol, vol.84, pp.10820-10831, 2010.