P. Agarwal, S. K. Parida, S. Raghuvanshi, S. Kapoor, P. Khurana et al., Rice improvement through genome-based functional analysis and molecular breeding in India, Rice, vol.9, p.1, 2016.

A. M. Allen, G. L. Barker, S. T. Berry, J. A. Coghill, R. Gwilliam et al., Transcript-specific, single-nucleotide polymorphism discovery and linkage analysis in hexaploid bread wheat (Triticum aestivum L.), Plant Biotechnol. J, vol.9, pp.1086-1099, 2011.

A. M. Allen, G. L. Barker, P. Wilkinson, A. Burridge, M. Winfield et al., Discovery and development of exome-based, co-dominant single nucleotide polymorphism markers in hexaploid wheat, Triticum aestivum L.). Plant Biotechnol. J, vol.11, pp.279-295, 2013.

J. Bednarek, A. Boulaflous, C. Girousse, C. Ravel, C. Tassy et al., Down-regulation of the TaGW2 gene by RNA interference results in decreased grain size and weight in wheat, J. Exp. Bot, vol.63, pp.5945-5955, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00964409

D. Bennett, A. Izanloo, M. Reynolds, H. Kuchel, P. Langridge et al., Genetic dissection of grain yield and physical grain quality in bread wheat (Triticum aestivum L.) under water-limited environments, Theor. Appl. Genet, vol.125, pp.255-271, 2012.

A. Börner, E. Schumann, A. Fürste, H. Cöster, B. Leithold et al., Mapping of quantitative trait loci determining agronomic important characters in hexaploid wheat, Triticum aestivum L.). Theor. Appl. Genet, vol.105, pp.921-936, 2002.

P. Borrill, N. Adamski, and C. Uauy, Genomics as the key to unlocking the polyploid potential of wheat, New Phytol, vol.208, pp.1008-1022, 2015.

J. S. Boyer and M. E. Westgate, Grain yields with limited water, J. Exp. Bot, vol.55, pp.2385-2394, 2004.

R. Brenchley, M. Spannagl, M. Pfeifer, G. L. Barker, R. D'amore et al., Analysis of the bread wheat genome using whole-genome shotgun sequencing, Nature, vol.491, pp.705-710, 2012.

C. R. Cavanagh, S. Chao, S. Wang, B. E. Huang, S. Stephen et al., Genome-wide comparative diversity uncovers multiple targets of selection for improvement in hexaploid wheat landraces and cultivars, Proc. Natl. Acad. Sci. U.S.A, vol.110, pp.8057-8062, 2013.

S. Chao, J. Dubcovsky, J. Dvorak, M. C. Luo, S. P. Baenziger et al., Population-and genome-specific patterns of linkage disequilibrium and SNP variation in spring and winter wheat (Triticum aestivum L.), BMC Genomics, 2010.

E. Charbonneau, D. Pellerin, and G. R. Oetzel, Impact of lowering dietary cation-anion difference in nonlactating dairy cows: a meta-analysis, J. Dairy Sci, vol.89, pp.537-548, 2006.

F. Chardon, D. Hourcade, V. Combes, and A. Charcosset, Mapping of a spontaneous mutation for early flowering time in maize highlights contrasting allelic series at two-linked QTL on chromosome 8, Theor. Appl. Genet, vol.112, pp.1-11, 2005.

F. Chardon, B. Virlon, L. Moreau, M. Falque, J. Joets et al., Genetic architecture of flowering time in maize as inferred from quantitative trait loci meta-analysis and synteny conservation with the rice genome, Genetics, vol.168, pp.2169-2185, 2004.

G. Charmet, N. Robert, M. R. Perretant, G. Gay, P. Sourdille et al., Marker assisted recurrent selection for cumulating QTLs for breadmaking related traits, Euphytica, vol.119, pp.89-93, 2001.
URL : https://hal.archives-ouvertes.fr/hal-00964241

C. Chu, S. S. Xu, T. L. Friesen, and J. D. Faris, Whole genome mapping in a wheat doubled haploid population using SSRs and TRAPs and the identification of QTL for agronomic traits, Mol. Breed, vol.22, pp.251-266, 2008.

J. L. Cuthbert, D. J. Somers, A. L. Brûlé-babel, P. D. Brown, and G. H. Crow, Molecular mapping of quantitative trait loci for yield and yield components in spring wheat, Triticum aestivum L.). Theor. Appl. Genet, vol.117, pp.595-608, 2008.

S. Deng, X. Wu, Y. Wu, R. Zhou, H. Wang et al., Characterization and precise mapping of a QTL increasing spike number with pleiotropic effects in wheat, Theor. Appl. Genet, vol.122, pp.281-289, 2011.

M. El-baidouri, F. Murat, M. Veyssiere, M. Molinier, R. Flores et al., Reconciling the evolutionary origin of bread wheat (Triticum aestivum), New Phytol, vol.213, pp.1477-1486, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01361976

M. E. Faricelli, M. Valárik, and J. Dubcovsky, Control of flowering time and spike development in cereals: the earliness per se Eps-1 region in wheat, rice, and Brachypodium, Funct. Integr. Genomics, vol.10, pp.293-306, 2010.

V. C. Gegas, A. Nazari, S. Griffiths, J. Simmonds, L. Fish et al., A genetic framework for grain size and shape variation in wheat, Plant Cell, vol.22, pp.1046-1056, 2010.

B. Goffinet and S. Gerber, Quantitative trait loci: a meta-analysis, Genetics, vol.155, pp.463-473, 2000.

S. Griffiths, J. Simmonds, M. Leverington, Y. Wang, L. Fish et al., Meta-QTL analysis of the genetic control of ear emergence in elite European winter wheat germplasm, Theor. Appl. Genet, vol.119, pp.383-395, 2009.

C. Groos, E. Bervas, E. Chanliaud, and G. Charmet, Genetic analysis of bread-making quality scores in bread wheat using a recombinant inbred line population, Theor. Appl. Genet, vol.115, pp.313-323, 2007.
URL : https://hal.archives-ouvertes.fr/hal-00964219

C. Groos, N. Robert, E. Bervas, and G. Charmet, Genetic analysis of grain protein-content, grain yield and thousand-kernel weight in bread wheat, Theor. Appl. Genet, vol.106, pp.1032-1040, 2003.
URL : https://hal.archives-ouvertes.fr/hal-00964240

D. Z. Habash, Z. Kehel, and M. Nachit, Genomic approaches for designing durum wheat ready for climate change with a focus on drought, J. Exp. Bot, vol.60, pp.2805-2815, 2009.

E. Hanocq, A. Laperche, O. Jaminon, A. L. Laine, L. Gouis et al., Most significant genome regions involved in the control of earliness traits in bread wheat, as revealed by QTL meta-analysis, Theor. Appl. Genet, vol.114, pp.569-584, 2007.

B. T. Heijmans, M. Beekman, H. Putter, N. Lakenberg, H. J. Van-der-wijk et al., Meta-analysis of four new genome scans for lipid parameters and analysis of positional candidates in positive linkage regions, Eur. J. Hum. Genet, vol.13, pp.1143-1153, 2005.

R. Huang, L. Jiang, J. Zheng, T. Wang, H. Wang et al., Genetic bases of rice grain shape: so many genes, so little known, Trends Plant Sci, vol.18, pp.218-226, 2013.

X. Q. Huang, S. Cloutier, L. Lycar, N. Radovanovic, D. G. Humphreys et al., Molecular detection of QTLs for agronomic and quality traits in a doubled haploid population derived from two Canadian wheats (Triticum aestivum L.), Theor. Appl. Genet, vol.113, pp.753-766, 2006.

X. Q. Huang, H. Kempf, M. W. Ganal, and M. S. Röder, Advanced backcross QTL analysis in progenies, Triticum aestivum L.). Theor. Appl. Genet, vol.109, pp.933-943, 2004.

, Genome sequencing and analysis of the model grass Brachypodium distachyon, International Brachypodium Initiative, vol.463, pp.763-768, 2010.

, A chromosomebased draft sequence of the hexaploid bread wheat (Triticum aestivum) genome, Science, vol.436, p.1251788, 2005.

J. Jia, S. Zhao, X. Kong, Y. Li, G. Zhao et al., Aegilops tauschii draft genome sequence reveals a gene repertoire for wheat adaptation, Nature, vol.496, pp.91-95, 2013.

M. C. Jordan, D. J. Somers, and T. W. Banks, Identifying regions of the wheat genome controlling seed development by mapping expression quantitative trait loci, Plant Biotechnol. J, vol.5, pp.442-453, 2007.

G. Z. Kang, G. Q. Liu, W. Xu, Y. J. Zhu, C. Y. Wang et al., Identification of the isoamylase 3 gene in common wheat and its expression profile during the grain-filling period, Genet. Mol. Res, vol.12, pp.4264-4275, 2013.

M. S. Khatkar, P. C. Thomson, I. Tammen, and H. W. Raadsma, Quantitative trait loci mapping in dairy cattle: review and meta-analysis, Genet. Sel. Evol, vol.36, pp.163-190, 2004.
URL : https://hal.archives-ouvertes.fr/hal-00894480

P. Kulwal, N. Kumar, A. Kumar, R. K. Gupta, H. S. Balyan et al., Gene networks in hexaploid wheat: interacting quantitative trait loci for grain protein content, Funct. Integr. Genomics, vol.5, pp.254-259, 2005.

N. Kumar, P. L. Kulwal, A. Gaur, A. K. Tyagi, J. P. Khurana et al., QTL analysis for grain weight in common wheat, Euphytica, vol.151, pp.135-144, 2006.

K. Lai, P. J. Berkman, M. T. Lorenc, C. Duran, L. Smits et al., WheatGenome.info: an integrated database and portal for wheat genome information, Plant Cell Physiol, vol.53, p.2, 2012.

A. Laperche, M. Brancourt-hulmel, E. Heumez, O. Gardet, E. Hanocq et al., Using genotype × nitrogen interaction variables to evaluate the QTL involved in wheat tolerance to nitrogen constraints, Theor. Appl. Genet, vol.115, pp.399-415, 2007.
URL : https://hal.archives-ouvertes.fr/hal-01192300

D. A. Lawlor, C. G. Owen, A. A. Davies, P. H. Whincup, S. Ebrahim et al., Sex differences in the association between birth weight and total cholesterol. A meta-analysis, Ann. Epidemol, vol.16, pp.19-25, 2006.

I. J. Lean, P. J. Degaris, D. M. Mcneil, and E. Block, Hypocalcemia in dairy cows: meta-analysis and dietary cation anion difference theory revisited, J. Dairy Sci, vol.89, pp.669-684, 2006.

M. Li, X. Li, Z. Zhou, P. Wu, M. Fang et al., Reassessment of the four yield-related genes Gn1a, DEP1, GS3, and IPA1 in rice using a CRISPR/Cas9 system, Front. Plant Sci, vol.7, p.377, 2016.

S. Li, J. Jia, X. Wei, X. Zhang, L. Li et al., A intervarietal genetic map and QTL analysis for yield traits in wheat, Mol. Breed, vol.20, pp.167-178, 2007.

H. Ling, S. Zhao, D. Liu, J. Wang, H. Sun et al., Draft genome of the wheat a-genome progenitor Triticum urartu, Nature, vol.496, pp.87-90, 2013.

X. Liu, R. Li, X. Chang, J. , and R. , Mapping QTLs for seedling root traits in a doubled haploid wheat population under different water regimes, Euphytica, vol.189, pp.51-66, 2013.

M. Luo, Y. Q. Gu, F. M. You, K. R. Deal, Y. Ma et al., A 4-gigabase physical map unlocks the structure and evolution of the complex genome of Aegilops tauschii, the wheat D-genome progenitor, Proc. Natl. Acad. Sci. U.S.A, vol.110, pp.7940-7945, 2013.

I. M. Macleod, N. A. Robinson, and M. E. Goddard, A consensus map of quantitative trait loci (QTL) affecting milk production, 50 Years of DNA: Proceedings of the Fifteenth Conference, Association for the Advancement of Animal Breeding and Genetics, pp.22-26, 2003.

C. A. Mccartney, D. J. Somers, D. G. Humphreys, O. Lukow, N. Ames et al., Mapping quantitative trait loci controlling agronomic traits in the spring wheat cross RL4452x'AC domain, Genome, vol.48, pp.870-883, 2005.

C. A. Mccartney, D. J. Somers, O. Lukow, N. Ames, J. Noll et al., QTL analysis of quality traits in the spring wheat cross RL4452 × "AC domain, Plant Breed, vol.125, pp.565-575, 2006.

R. A. Mcintosh, J. Dubcovsky, W. J. Rogers, C. F. Morris, R. Appels et al., Catalogue of gene symbols for wheat: 2011 supplement, Annu. Wheat Newsl, vol.57, pp.303-321, 2011.

R. R. Mir, N. Kumar, V. Jaiswal, N. Girdharwal, M. Prasad et al., Genetic dissection of grain weight in bread wheat through quantitative trait locus interval and association mapping, Mol. Breed, vol.29, pp.963-972, 2012.

F. Murat, R. Zhang, S. Guizard, R. Flores, A. Armero et al., Shared subgenome dominance following polyploidization explains grass genome evolutionary plasticity from a seven protochromosome ancestor with 16K protogenes, Genome Biol. Evol, vol.6, pp.12-33, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01218128

B. Narasimhamoorthy, B. S. Gill, A. K. Fritz, J. C. Nelson, and G. L. Brown-guedira, Advanced backcross QTL analysis of a hard winter wheat × synthetic wheat population, Theor. Appl. Genet, vol.112, pp.787-796, 2006.

A. H. Paterson, J. E. Bowers, R. Bruggmann, I. Dubchak, J. Grimwood et al., The Sorghum bicolor genome and the diversification of grasses, Nature, vol.457, pp.551-556, 2009.

S. K. Pham and P. A. Pevzner, DRIMM-Synteny: decomposing genomes into evolutionary conserved segments, Bioinformatics, vol.26, pp.2509-2516, 2010.

C. Pont, F. Murat, C. Confolent, S. Balzergue, and J. Salse, , 2011.

, RNA-seq in grain unveils fate of neo-and paleopolyploidization events in bread wheat (Triticum aestivum L.), Genome Biol, vol.12, p.119

C. Pont, F. Murat, S. Guizard, R. Flores, S. Foucrier et al., Wheat syntenome unveils new evidences of contrasted evolutionary plasticity between paleo-and neoduplicated subgenomes, Plant J, vol.76, pp.1030-1044, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00964421

C. Pont and J. Salse, Wheat paleohistory created asymmetrical genomic evolution, Curr. Opin. Plant Biol, vol.36, pp.29-37, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01607172

M. Prasad, N. Kumar, P. Kulwal, M. Röder, H. Balyan et al., QTL analysis for grain protein content using SSR markers and validation studies using NILs in bread wheat, Theor. Appl. Genet, vol.106, pp.659-667, 2003.

C. Ravel, M. Dardevet, F. Leenhardt, J. Bordes, J. L. Joseph et al., Improving the yellow pigment content of bread wheat flour by selecting the three homoeologous copies of Psy1, Mol. Breed, vol.31, pp.87-99, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00964462

T. Rice, R. S. Cooper, X. D. Wu, C. Bouchard, T. Rankinen et al., Meta-analysis of genome-wide scans for blood pressure in African American and Nigerian samples, Am. J. Hypertens, vol.19, pp.270-274, 2006.

C. Saintenac, D. Jiang, and E. D. Akhunov, Targeted analysis of nucleotide and copy number variation by exon capture in allotetraploid wheat genome, 2011.

, Genome Biol, vol.12, p.88

C. Saintenac, D. Jiang, S. Wang, A. , and E. , Sequencebased mapping of the polyploid wheat genome, G3, vol.3, pp.1105-1114, 2013.

T. Sakamoto and M. Matsuoka, Identifying and exploiting grain yield genes in rice, Curr. Opin. Plant Biol, vol.11, pp.209-214, 2008.

J. Salse, M. Abrouk, F. Murat, U. M. Quraishi, and C. Feuillet, Improved criteria and comparative genomics tool provide new insights into grass paleogenomics, Brief. Bioinform, vol.10, pp.619-630, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00964321

S. Salvi, S. Corneti, M. Bellotti, N. Carraro, M. C. Sanguineti et al., Genetic dissection of maize phenology using an intraspecific introgression library, BMC Plant Biol, vol.11, p.4, 2011.

D. J. Somers, P. Isaac, and K. Edwards, A high-density microsatellite consensus map for bread wheat, Triticum aestivum L.). Theor. Appl. Genet, vol.109, pp.1105-1114, 2004.

O. Sosnowski, A. Charcosset, J. , and J. , BioMercator V3: an upgrade of genetic map compilation and quantitative trait loci metaanalysis algorithms, Bioinformatics, vol.28, pp.2082-2083, 2012.

X. Y. Sun, K. Wu, Y. Zhao, F. M. Kong, G. Z. Han et al., QTL analysis of kernel shape and weight using recombinant inbred lines in wheat, Euphytica, vol.165, pp.615-624, 2008.

Y. L. Tang, J. Li, Y. Q. Wu, H. T. Wei, C. S. Li et al., Identification of QTLs for yield-related traits in the ecombinant inbred line population derived from the cross between a synthetic hexaploid wheat-derived variety chuanmai 42 and a Chinese elite variety chuannong 16, Agric. Sci. China, vol.10, issue.11, p.60165, 2011.

D. Trebbi, M. Maccaferri, P. De-heer, A. Sorensen, S. Giuliani et al., High-throughput SNP discovery and genotyping in durum wheat, Triticum durum Desf.). Theor. Appl. Genet, vol.123, pp.555-569, 2011.

A. S. Turner, R. P. Bradburne, L. Fish, and J. W. Snape, New quantitative trait loci influencing grain texture and protein content in bread wheat, J. Cereal Sci, vol.40, pp.51-60, 2004.

S. Tyagi, R. R. Mir, H. S. Balyan, and P. K. Gupta, Interval mapping and meta-QTL analysis of grain traits in common wheat (Triticum aestivum L.), Euphytica, vol.201, pp.367-380, 2015.

R. Valluru, M. P. Reynolds, and J. Salse, Genetic and molecular bases of yield-associated traits: a translational biology approach between rice and wheat, Theor. Appl. Genet, vol.127, pp.1463-1489, 2014.
URL : https://hal.archives-ouvertes.fr/hal-02285489

J. B. Veyrieras, B. Goffinet, and A. Charcosset, MetaQTL: a package of new computational methods for the meta-analysis of QTL mapping experiments, BMC Bioinformatics, vol.8, p.49, 2007.

J. Wang, W. Liu, H. Wang, L. Li, J. Wu et al., QTL mapping of yield-related traits in the wheat germplasm 3228, Euphytica, vol.177, pp.277-292, 2011.

J. Wang, M. C. Luo, Z. Chen, F. M. You, Y. Wei et al., Aegilops tauschii single nucleotide polymorphisms shed light on the origins of wheat D-genome genetic diversity and pinpoint the geographic origin of hexaploid wheat, New Phytol, vol.198, pp.925-937, 2013.

R. X. Wang, L. Hai, X. Y. Zhang, G. X. You, C. S. Yan et al., QTL mapping for grain filling rate and yield-related traits in RILs of the Chinese winter wheat population Heshangmai × Yu8679, Theor. Appl. Genet, vol.118, pp.313-325, 2009.

S. Wang, D. Wong, K. Forrest, A. Allen, S. Chao et al., Characterization of polyploid wheat genomic diversity using a high-density 90, 2014.
URL : https://hal.archives-ouvertes.fr/hal-02285461

, 000 single nucleotide polymorphism array, Plant Biotechnol. J, vol.12, pp.786-796

M. O. Winfield, P. A. Wilkinson, A. M. Allen, G. L. Barker, J. A. Coghill et al., Targeted re-sequencing of the allohexaploid wheat exome, Plant Biotechnol. J, vol.10, pp.733-742, 2012.

Z. Xu, R. J. Kohel, G. Song, J. Cho, J. Yu et al., An integrated genetic and physical map of homoeologous chromosomes 12 and 26 in upland cotton (G. hirsutum L.), BMC Genomics, vol.9, p.108, 2008.

F. M. You, N. Huo, K. R. Deal, Y. Q. Gu, M. C. Luo et al., Annotation-based genome-wide SNP discovery in the large and complex Aegilops tauschii genome using next-generation sequencing without a reference genome sequence, BMC Genomics, vol.12, p.59, 2011.

J. Zhang, W. Liu, X. Yang, A. Gao, X. Li et al., Isolation and characterization of two putative cytokinin oxidase genes related to grain number per spike phenotype in wheat, Mol. Biol. Rep, vol.38, pp.2337-2347, 2011.