L. A. Lacey, Insect pathogens as biological control agents: Back to the future, Journal of invertebrate pathology, vol.132, pp.1-41, 2015.

R. U. Ehlers and H. M. Hokkanen, Insect biocontrol with non-endemic entomopathogenic nematodes (Steinernema and Heterorhabditis spp): Conclusions and recommendations of a combined OECD and COST Workshop on Scientific and Regulatory Policy Issues, Biocontrol Science and Technology, vol.6, pp.295-302, 1996.

A. S. Negrisoli, M. S. Garcia, C. R. Negrisoli, D. Bernardi, and A. Da-silva, Efficacy of entomopathogenic nematodes (Nematoda: Rhabditida) and insecticide mixtures to control Spodoptera frugiperda (Smith, 1797) (Lepidoptera: Noctuidae) in corn crops, Crop Protection, vol.29, pp.677-683, 2010.

D. M. Viteri, A. M. Linares, and L. Flores, Use of the entomopathogenic nematode Steinernema carpocapsae in combination with lowtoxicity insecticides to control fall armyworm (Lepidoptera: Noctuidae) Larvae, Florida Entomologist, vol.101, pp.327-329, 2018.

A. M. Koppenhofer, P. S. Grewal, and E. M. Fuzy, Differences in penetration routes and establishment rates of four entomopathogenic nematode species into four white grub species, Journal of invertebrate pathology, vol.94, pp.184-195, 2007.

N. Balasubramanian, D. Toubarro, and N. Simoes, Biochemical study and in vitro insect immune suppression by a trypsin-like secreted protease from the nematode Steinernema carpocapsae, Parasite Immunology, vol.32, pp.165-175, 2010.

D. Z. Chang, L. Serra, D. Lu, A. Mortazavi, and A. R. Dillman, A core set of venom proteins is released by entomopathogenic nematodes in the genus Steinernema, PLoS Pathogens, vol.15, 2019.

J. M. Crawford, C. Portmann, X. Zhang, M. B. Roeffaers, and J. Clardy, Small molecule perimeter defense in entomopathogenic bacteria, Proceedings of the National Academy of Sciences of the United States of America, vol.109, pp.10821-10826, 2012.

A. R. Dillman, Comparative genomics of Steinernema reveals deeply conserved gene regulatory networks, Genome Biology, vol.16, 2015.

B. Duvic, Cecropins as a marker of Spodoptera frugiperda immunosuppression during entomopathogenic bacterial challenge, Journal of insect physiology, vol.58, pp.881-888, 2012.

D. Ji and Y. Kim, An entomopathogenic bacterium, Xenorhabdus nematophila, inhibits the expression of an antibacterial peptide, cecropin, of the beet armyworm, Spodoptera exigua, Journal of insect physiology, vol.50, pp.489-496, 2004.

I. H. Kim, The insect pathogenic bacterium Xenorhabdus innexi has attenuated virulence in multiple insect model hosts yet encodes a potent mosquitocidal toxin, BMC genomics, vol.18, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01837305

, Scientific RepoRtS |, vol.9, p.12879, 2019.

D. Lu, Activated entomopathogenic nematode infective juveniles release lethal venom proteins, PLoS Pathog, vol.13, 2017.

D. Toubarro, A serpin released by an entomopathogen impairs clot formation in insect defense system, PloS one, vol.8, 2013.

T. N. Walter, G. B. Dunphy, and C. A. Mandato, Steinernema carpocapsae DD136: metabolites limit the non-self adhesion responses of haemocytes of two lepidopteran larvae, Galleria mellonella (F. Pyralidae) and Malacosoma disstria (F. Lasiocampidae)

, Experimental Parasitology, vol.120, pp.161-174, 2008.

M. Sicard, Stages of infection during the tripartite interaction between Xenorhabdus nematophila, its nematode vector, and insect hosts, Applied and environmental microbiology, vol.70, pp.6473-6480, 2004.

B. C. Dowds and A. Peters, , pp.69-96, 2002.

B. M. Sadd and P. Schmid-hempel, Insect immunity shows specificity in protection upon secondary pathogen exposure, Current Biology, vol.16, pp.1206-1210, 2006.

M. Tassetto, M. Kunitomi, and R. Andino, Circulating immune cells mediate a systemic RNAi-based adaptive antiviral response in Drosophila, Cell, vol.169, pp.314-325, 2017.

B. Lemaitre and J. A. Hoffmann, The host defense of Drosophila melanogaster, Annual Review of Immunology, vol.25, pp.697-743, 2007.
URL : https://hal.archives-ouvertes.fr/hal-00167467

H. Tanaka, A genome-wide analysis of genes and gene families involved in innate immunity of Bombyx mori, Insect biochemistry and molecular biology, vol.38, pp.1087-1110, 2008.

Z. Zou, Comparative genomic analysis of the Tribolium immune system, Genome Biology, vol.8, 2007.

X. Cao, The immune signaling pathways of Manduca sexta, Insect biochemistry and molecular biology, vol.62, pp.64-74, 2015.

J. D. Evans, Immune pathways and defence mechanisms in honey bees Apis mellifera, Insect molecular biology, vol.15, pp.645-656, 2006.

N. M. Gerardo, Immunity and other defenses in pea aphids, Acyrthosiphon pisum, Genome Biology, vol.11, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00459961

D. Ferrandon, The complementary facets of epithelial host defenses in the genetic model organism Drosophila melanogaster: from resistance to resilience, Current opinion in immunology, vol.25, pp.59-70, 2013.

N. Kristensen and G. Chauvin, Handbook of Zoology, pp.1-8, 2012.

M. J. Lehane, Peritrophic matrix structure and function, Annual Review of Entomology, vol.42, pp.525-550, 1997.

M. R. Strand, The insect cellular immune response, Insect Science, vol.15, pp.1-14, 2008.

P. Jiravanichpaisal, B. L. Lee, and K. Soderhall, Cell-mediated immunity in arthropods: hematopoiesis, coagulation, melanization and opsonization, Immunobiology, vol.211, pp.213-236, 2006.

J. Nakhleh, L. El-moussawi, and M. A. Osta, Chapter Three -The Melanization Response in Insect Immunity, Advances in Insect Physiology, vol.52, pp.83-109, 2017.

D. Ferrandon, J. L. Imler, C. Hetru, and J. A. Hoffmann, The Drosophila systemic immune response: sensing and signalling during bacterial and fungal infections, Nature reviews immunology, vol.7, pp.862-874, 2007.

N. Issa, The circulating protease Persephone is an immune sensor for microbial proteolytic activities upstream of the Drosophila Toll pathway, Molecular Cell, vol.69, pp.539-550, 2018.

B. Arefin, Genome-wide transcriptional analysis of Drosophila larvae infected by entomopathogenic nematodes shows involvement of complement, recognition and extracellular matrix proteins, Journal of Innate Immununity, vol.6, pp.192-204, 2014.

J. C. Castillo, Drosophila anti-nematode and antibacterial immune regulators revealed by RNA-Seq, BMC genomics, vol.16, 2015.

S. Yadav, S. Daugherty, A. C. Shetty, and I. Eleftherianos, RNAseq analysis of the Drosophila response to the entomopathogenic nematode Steinernema, G3 (Bethesda), vol.7, pp.1955-1967, 2017.

G. Goergen, P. L. Kumar, S. B. Sankung, A. Togola, and M. Tamo, First Report of Outbreaks of the Fall Armyworm Spodoptera frugiperda, Lepidoptera, Noctuidae), a new alien invasive pest in West and Central Africa, vol.11, 2016.

A. Gouin, Two genomes of highly polyphagous lepidopteran pests (Spodoptera frugiperda, Noctuidae) with different host-plant ranges, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01633879

M. I. Love, W. Huber, and S. Anders, Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2, Genome Biology, vol.15, 2014.

L. Zhang, Y. W. Wang, and Z. Q. Lu, Midgut immune responses induced by bacterial infection in the silkworm, Bombyx mori, Journal of Zhejiang University. Science. B, vol.16, pp.875-882, 2015.

G. O. Poinar and P. T. Himsworth, Neoplectana parasitism of larvae of the greater wax moth Galleria mellonella, Journal of invertebrate pathology, vol.9, pp.241-246, 1967.

B. Biteau, Lifespan extension by preserving proliferative homeostasis in Drosophila, PLoS Genetics, vol.6, 2010.

R. Feyereisen, Insect P450 enzymes, Annual Reviews of Entomology, vol.44, pp.507-533, 1999.

A. Kleino, Inhibitor of apoptosis 2 and TAK1-binding protein are components of the Drosophila Imd pathway, EMBO Journal, vol.24, pp.3423-3434, 2005.

M. F. Brivio, M. Mastore, and M. Moro, The role of Steinernema feltiae body-surface lipids in host-parasite immunological interactions, Molecular and Biochemical Parasitology, vol.135, pp.111-121, 2004.

H. Liu, Steinernema glaseri surface enolase: molecular cloning, biological characterization, and role in host immune suppression, Molecular and Biochemical Parasitology, vol.185, pp.89-98, 2012.

D. Toubarro, M. M. Avila, R. Montiel, and N. Simoes, A pathogenic nematode targets recognition proteins to avoid insect defenses, PloS one, vol.8, 2013.

N. Balasubramanian, Y. J. Hao, D. Toubarro, G. Nascimento, and N. Simoes, Purification, biochemical and molecular analysis of a chymotrypsin protease with prophenoloxidase suppression activity from the entomopathogenic nematode Steinernema carpocapsae, International Journal for Parasitology, vol.39, pp.975-984, 2009.

E. L. Arrese and J. L. Soulages, Insect fat body: energy, metabolism, and regulation, Annual Review of Entomology, vol.55, pp.207-225, 2010.

B. Lemaitre, E. Nicolas, L. Michaut, J. M. Reichhart, and J. A. Hoffmann, The dorsoventral regulatory gene cassette spatzle/Toll/ cactus controls the potent antifungal response in Drosophila adults, Cell, vol.86, pp.973-983, 1996.

A. N. Weber, Binding of the Drosophila cytokine Spatzle to Toll is direct and establishes signaling, Nature immunology, vol.4, pp.794-800, 2003.

M. D. Lavine and M. R. Strand, Insect hemocytes and their role in immunity, Insect biochemistry and molecular biology, vol.32, pp.1295-1309, 2002.

G. Bidla, M. Lindgren, U. Theopold, and M. S. Dushay, Hemolymph coagulation and phenoloxidase in Drosophila larvae, Developmental and Comparative Immunology, vol.29, pp.669-679, 2005.

M. R. Kanost and M. J. Gorman, Phenoloxidases in insect immunity, pp.69-96, 2008.

A. Lu, Insect prophenoloxidase: the view beyond immunity, Frontiers in Physiology, vol.5, pp.252-252, 2014.

L. C. Bartholomay, Description of the transcriptomes of immune response-activated hemocytes from the mosquito vectors Aedes aegypti and Armigeres subalbatus, Infection and immunity, vol.72, pp.4114-4126, 2004.

G. Dimopoulos, Genome expression analysis of Anopheles gambiae: responses to injury, bacterial challenge, and malaria infection, Proceedings of the National Academy of Sciences USA, vol.99, pp.8814-8819, 2002.

P. Irving, New insights into Drosophila larval haemocyte functions through genome-wide analysis, Cell Microbiology, vol.7, pp.335-350, 2005.
URL : https://hal.archives-ouvertes.fr/hal-00093694

H. Jiang, Molecular identification of a bevy of serine proteinases in Manduca sexta hemolymph, Insect biochemistry and molecular biology, vol.35, pp.931-943, 2005.

M. R. Kanost and H. Jiang, Clip-domain serine proteases as immune factors in insect hemolymph, Current Opinion in Insect Science, vol.11, pp.47-55, 2015.

A. Haghayeghi, A. Sarac, S. Czerniecki, J. Grosshans, and F. Schock, Pellino enhances innate immunity in Drosophila, Mechanisms of Development, vol.127, pp.301-307, 2010.

S. Ji, Cell-surface localization of Pellino antagonizes Toll-mediated innate immune signalling by controlling MyD88 turnover in Drosophila, Nature. Communications, vol.5, 2014.

A. N. Volkoff, Characterization and transcriptional profiles of three Spodoptera frugiperda genes encoding cysteine-rich peptides. A new class of defensin-like genes from lepidopteran insects?, Gene, vol.319, pp.43-53, 2003.

D. Destoumieux-garzon, Spodoptera frugiperda X-tox protein, an immune related defensin rosary, has lost the function of ancestral defensins, PloS one, vol.4, 2009.

T. Michel, J. M. Reichhart, J. A. Hoffmann, and J. Royet, Drosophila Toll is activated by Gram-positive bacteria through a circulating peptidoglycan recognition protein, Nature, vol.414, pp.756-759, 2001.

S. Zhao, A novel peptidoglycan recognition protein involved in the prophenoloxidase activation system and antimicrobial peptide production in Antheraea pernyi, Developmental and Comparative Immunology, vol.86, pp.78-85, 2018.

R. Krautz, B. Arefin, and U. Theopold, Damage signals in the insect immune response, Frontiers in Plant Science, vol.5, 2014.

C. Qiao, SRP gene is required for Helicoverpa armigera prophenoloxidase activation and nodulation response, Developmental and Comparative Immunology, vol.44, pp.94-99, 2014.

K. Senger, K. Harris, and M. Levine, GATA factors participate in tissue-specific immune responses in Drosophila larvae, Proceedings of the National Academy of Sciences USA, vol.103, pp.15957-15962, 2006.

A. Vilcinskas and M. Wedde, Insect inhibitors of metalloproteinases, IUBMB life, vol.54, pp.339-343, 2002.

M. Wedde, C. Weise, P. Kopacek, P. Franke, and A. Vilcinskas, Purification and characterization of an inducible metalloprotease inhibitor from the hemolymph of greater wax moth larvae, Galleria mellonella, European journal of biochemistry, vol.255, pp.535-543, 1998.

A. Clermont, Cloning and expression of an inhibitor of microbial metalloproteinases from insects contributing to innate immunity, The Biochemical Journal, vol.382, pp.315-322, 2004.

C. Caldas, A. Cherqui, A. Pereira, and N. Simões, Purification and characterization of an extracellular protease from Xenorhabdus nematophila involved in insect immunosuppression, Applied and environmental microbiology, vol.68, pp.1297-1304, 2002.

Y. J. Jing, D. Toubarro, Y. J. Hao, and N. Simoes, Cloning, characterisation and heterologous expression of an astacin metalloprotease, Sc-AST, from the entomoparasitic nematode Steinernema carpocapsae, Molecular and Biochemical Parasitology, vol.174, pp.101-108, 2010.

M. K. Massaoud, J. Marokhazi, and I. Venekei, Enzymatic characterization of a serralysin-like metalloprotease from the entomopathogen bacterium, Xenorhabdus. Biochimica et biophysica acta 1814, pp.1333-1339, 2011.

T. M. Schmidt, B. Bleakley, and K. H. Nealson, Characterization of an extracellular protease from the insect pathogen Xenorhabdus luminescens, Applied and environmental microbiology, vol.54, pp.2793-2797, 1988.

H. Myllymaki, S. Valanne, and M. Ramet, The Drosophila imd signaling pathway, Journal of immunology, vol.192, pp.3455-3462, 2014.

P. K. Kakumani, P. Malhotra, S. K. Mukherjee, and R. K. Bhatnagar, A draft genome assembly of the army worm, Spodoptera frugiperda, Genomics, vol.104, pp.134-143, 2014.

S. Nandakumar, H. Ma, and A. S. Khan, Whole-genome sequence of the Spodoptera frugiperda Sf9 insect cell line, Genome announcements, vol.5, 2017.

T. Cheng, Genomic adaptation to polyphagy and insecticides in a major East Asian noctuid pest, Nature ecology & evolution, vol.1, pp.1747-1756, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01837307

S. L. Pearce, Genomic innovations, transcriptional plasticity and gene loss underlying the evolution and divergence of two highly polyphagous and invasive Helicoverpa pest species, BMC biology, vol.15, 2017.

S. Minakhina, J. Yang, and R. Steward, Tamo selectively modulates nuclear import in Drosophila, Genes to Cells, vol.8, pp.299-310, 2003.

S. Chou, Transferred interbacterial antagonism genes augment eukaryotic innate immune function, Nature, vol.518, pp.98-101, 2015.

J. L. Aymeric, A. Givaudan, and B. Duvic, Imd pathway is involved in the interaction of Drosophila melanogaster with the entomopathogenic bacteria, Xenorhabdus nematophila and Photorhabdus luminescens, Molecular Immunology, vol.47, pp.2342-2348, 2010.

M. Mastore, V. Arizza, B. Manachini, and M. F. Brivio, Modulation of immune responses of Rhynchophorus ferrugineus (Insecta: Coleoptera) induced by the entomopathogenic nematode Steinernema carpocapsae (Nematoda: Rhabditida), Insect Science, vol.22, pp.748-760, 2015.

J. M. Pena, M. A. Carrillo, and E. A. Hallem, Variation in the susceptibility of Drosophila to different entomopathogenic nematodes, Infection and Immunity, vol.83, pp.1130-1138, 2015.

S. Binda-rossetti, M. Mastore, M. Protasoni, and M. F. Brivio, Effects of an entomopathogen nematode on the immune response of the insect pest red palm weevil: Focus on the host antimicrobial response, Journal of invertebrate pathology, vol.133, pp.110-119, 2016.

, Elevage de plusieurs espèces de Lépidoptères Noctuidae sur milieu artificiel riche et sur milieu artificiel simplifié, Annales de Zoologie et Ecologie Animale, vol.2, pp.79-91, 1970.

G. F. White, A method for obtaining infective nematode larvae from cultures, Science, vol.66, p.302, 1927.

J. Van-sambeek and A. Wiesner, Successful parasitation of locusts by entomopathogenic nematodes is correlated with inhibition of insect phagocytes, Journal of invertebrate pathology, vol.73, pp.154-161, 1999.

B. Langmead and S. L. Salzberg, Fast gapped-read alignment with Bowtie 2, Nature methods, vol.9, pp.357-359, 2012.

H. Li, The sequence alignment/map format and SAMtools, Bioinformatics, vol.25, pp.2078-2079, 2009.

A. Conesa, Blast2GO: a universal tool for annotation, visualization and analysis in functional genomics research, Bioinformatics, vol.21, pp.3674-3676, 2005.

A. Untergasser, Primer3 -New capabilities and interfaces, Nucleic acids research, vol.40, 2012.

M. W. Pfaffl, G. W. Horgan, and L. Dempfle, Relative expression software tool (REST) for group-wise comparison and statistical analysis of relative expression results in real-time PCR, Nucleic acids research, vol.30, p.36, 2002.

S. Q. Le and O. Gascuel, An improved general amino acid replacement matrix, Molecular Biology and Evolution, vol.25, pp.1307-1320, 2008.
URL : https://hal.archives-ouvertes.fr/lirmm-00324106

J. Felsenstein, Confidence limits on phylogenies: An approach using the bootstrap, Evolution; international journal of organic evolution, vol.39, pp.783-791, 1985.

M. R. Kanost, Multifaceted biological insights from a draft genome sequence of the tobacco hornworm moth, Manduca sexta, Insect biochemistry and molecular biology, vol.76, pp.118-147, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01988455