J. Qiu, M. Söderlund-venermo, N. S. Young, and . Human-parvoviruses, Clin. Microbiol. Rev, vol.30, pp.43-113, 2017.

M. M. France and J. R. Turner, The mucosal barrier at a glance, J. Cell Sci, vol.130, pp.307-314, 2017.

L. Stavolone and V. Lionetti, Extracellular Matrix in Plants and Animals: Hooks and Locks for Viruses, 1760.

L. Pendu, J. Nyström, and K. , Ruvoën-Clouet, N. Host-pathogen co-evolution and glycan interactions, Curr. Opin. Virol, vol.7, pp.88-94, 2014.

S. F. Cotmore, M. Agbandje-mckenna, J. A. Chiorini, D. V. Mukha, D. J. Pintel et al., The family Parvoviridae. Arch. Virol, vol.159, pp.1239-1247, 2014.

M. Mietzsch, J. J. Pénzes, and M. Agbandje-mckenna, Twenty-Five Years of Structural Parvovirology, vol.11, 2019.

S. Pillay, N. L. Meyer, A. S. Puschnik, O. Davulcu, J. Diep et al., An essential receptor for adeno-associated virus infection, Nature, vol.530, pp.108-112, 2016.

L. B. Goodman, S. M. Lyi, N. C. Johnson, J. O. Cifuente, S. L. Hafenstein et al., Binding site on the transferrin receptor for the parvovirus capsid and effects of altered affinity on cell uptake and infection, J. Virol, vol.84, pp.4969-4978, 2010.

D. Pasquale, G. Chiorini, and J. A. , AAV transcytosis through barrier epithelia and endothelium, Mol. Ther, vol.13, pp.506-516, 2006.

R. W. Walters, J. M. Pilewski, J. A. Chiorini, and J. Zabner, Secreted and Transmembrane Mucins Inhibit Gene Transfer with AAV4 More Efficiently than AAV5, J. Biol. Chem, vol.277, pp.23709-23713, 2002.

K. Ito, K. Kidokoro, S. Shimura, S. Katsuma, and K. Kadono-okuda, Detailed investigation of the sequential pathological changes in silkworm larvae infected with Bombyx densovirus type 1, J. Invertebr. Pathol, vol.112, pp.213-218, 2013.

Y. Wang, A. S. Gosselin-grenet, I. Castelli, G. Cermenati, M. Ravallec et al., Densovirus crosses the insect midgut by transcytosis and disturbs the epithelial barrier function, J. Virol, vol.87, pp.12380-12391, 2013.
URL : https://hal.archives-ouvertes.fr/hal-01837252

D. Mutuel, M. Ravallec, B. Chabi, C. Multeau, J. M. Salmon et al., Pathogenesis of Junonia coenia densovirus in Spodoptera frugiperda: A route of infection that leads to hypoxia, Virology, vol.403, pp.137-144, 2010.

P. Tijssen, J. J. Pénzes, Q. Yu, H. T. Pham, and M. Bergoin, Diversity of small, single-stranded DNA viruses of invertebrates and their chaotic evolutionary past, J. Invertebr. Pathol, vol.140, pp.83-96, 2016.
URL : https://hal.archives-ouvertes.fr/pasteur-01421257

K. Ito, K. Kidokoro, S. Katsuma, H. Sezutsu, K. Uchino et al., A single amino acid substitution in the Bombyx-specific mucin-like membrane protein causes resistance to Bombyx mori densovirus, Sci. Rep, vol.8, p.7430, 2018.

D. Hegedus, M. Erlandson, C. Gillott, and U. Toprak, New insights into peritrophic matrix synthesis, architecture, and function, Annu. Rev. Entomol, vol.54, pp.285-302, 2009.

R. O. Dias, C. Cardoso, A. C. Pimentel, T. F. Damasceno, C. Ferreira et al., The roles of mucus-forming mucins, peritrophins and peritrophins with mucin domains in the insect midgut, Insect Mol. Biol, vol.27, pp.46-60, 2018.

W. R. Terra, The origin and functions of the insect peritrophic membrane and peritrophic gel, Arch. Insect Biochem. Physiol, vol.47, pp.47-61, 2001.

H. Kawakita, K. Miyamoto, S. Wada, and W. Mitsuhashi, Analysis of the ultrastructure and formation pattern of the peritrophic membrane in the cupreous chafer, Anomala cuprea (Coleoptera: Scarabaeidae), Appl. Entomol. Zool, vol.51, pp.133-142, 2016.

W. R. Terra and C. Ferreira, Insect digestive enzymes: Properties, compartmentalization and function, Comp. Biochem. Physiol. Part B Comp. Biochem, vol.109, pp.1-62, 1994.

E. Chiu, M. Hijnen, R. D. Bunker, M. Boudes, C. Rajendran et al., Structural basis for the enhancement of virulence by viral spindles and their in vivo crystallization, Proc. Natl. Acad. Sci, vol.112, pp.3973-3978, 2015.

A. L. Passarelli, Barriers to success: How baculoviruses establish efficient systemic infections, Virology, vol.411, pp.383-392, 2011.

W. Mitsuhashi and K. Miyamoto, Disintegration of the peritrophic membrane of silkworm larvae due to spindles of an entomopoxvirus, J. Invertebr. Pathol, vol.82, pp.34-40, 2003.

W. Mitsuhashi, S. Shimura, K. Miyamoto, and T. N. Sugimoto, Spatial distribution of orally administered viral fusolin protein in the insect midgut and possible synergism between fusolin and digestive proteases to disrupt the midgut peritrophic matrix, Arch. Virol, vol.164, pp.17-25, 2019.

M. Krupovic and E. V. Koonin, Multiple origins of viral capsid proteins from cellular ancestors, Proc. Natl. Acad. Sci, vol.114, pp.2401-2410, 2017.
URL : https://hal.archives-ouvertes.fr/pasteur-01977364

Y. Li, F. X. Jousset, C. Giraud, F. Rolling, J. M. Quiot et al., A titration procedure of the Junonia coenia densovirus and quantitation of transfection by its cloned genomic DNA in four lepidopteran cell lines, J. Virol. Methods, vol.57, pp.47-60, 1996.

X. Shi, M. Chamankhah, S. Visal-shah, S. M. Hemmingsen, M. Erlandson et al., Modeling the structure of the type I peritrophic matrix: Characterization of a Mamestra configurata intestinal mucin and a novel peritrophin containing 19 chitin binding domains, Insect Biochem. Mol. Biol, vol.34, pp.1101-1115, 2004.

R. M. Zacharius, T. E. Zell, J. H. Morrison, and J. J. Woodlock, Glycoprotein staining following electrophoresis on acrylamide gels, Anal. Biochem, vol.30, pp.148-152, 1969.

D. G. Edmondson and S. Y. Dent, Identification of protein interactions by far western analysis, Curr. Protoc. Protein Sci, vol.55, 2001.

E. Thouvenot, S. Urbach, C. Dantec, J. Poncet, M. Séveno et al., Enhanced detection of CNS cell secretome in plasma protein-depleted cerebrospinal fluid, J. Proteome Res, vol.7, pp.4409-4421, 2008.

J. V. Olsen, L. M. De-godoy, G. Li, B. Macek, P. Mortensen et al., Parts per million mass accuracy on an Orbitrap mass spectrometer via lock mass injection into a C-trap, Mol. Cell Proteom, 2005.

J. Cox and M. Mann, MaxQuant enables high peptide identification rates, individualized p.p.b.-range mass accuracies and proteome-wide protein quantification, Nat. Biotechnol, vol.26, pp.1367-1372, 2008.

A. Gouin, A. Bretaudeau, K. Nam, S. Gimenez, J. Aury et al., Two genomes of highly polyphagous lepidopteran pests (Spodoptera frugiperda, Noctuidae) with different host-plant ranges, vol.7, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01633879

A. Conesa, S. Gotz, J. M. Garcia-gomez, J. Terol, M. Talon et al., Blast2GO: A universal tool for annotation, visualization and analysis in functional genomics research, Bioinformatics, vol.21, pp.3674-3676, 2005.

K. L. Nielsen, A. L. Hogh, and J. Emmersen, DeepSAGE-digital transcriptomics with high sensitivity, simple experimental protocol and multiplexing of samples, Nucleic Acids Res, vol.34, p.133, 2006.

J. De-lorgeril, R. Zenagui, R. D. Rosa, D. Piquemal, and E. Bachere, Whole transcriptome profiling of successful immune response to Vibrio infections in the oyster Crassostrea gigas by digital gene expression analysis, PLoS ONE, vol.6, 2011.

V. E. Velculescu, L. Zhang, B. Vogelstein, and K. W. Kinzler, Serial analysis of gene expression, Science, vol.270, pp.484-487, 1995.

F. Legeai, S. Gimenez, B. Duvic, J. M. Escoubas, A. S. Gosselin-grenet et al., Establishment and analysis of a reference transcriptome for Spodoptera frugiperda
URL : https://hal.archives-ouvertes.fr/hal-01058982

C. Ferreira, A. N. Capella, R. Sitnik, and W. R. Terra, Properties of the digestive enzymes and the permeability of the peritrophic membrane of Spodoptera frugiperda (Lepidoptera) larvae, Comp. Biochem. Physiol, vol.107, pp.631-640, 1994.

W. Herth, Calcofluor white and Congo red inhibit chitin microfibril assembly of Poterioochromonas: Evidence for a gap between polymerization and microfibril formation, J. Cell Biol, vol.87, pp.442-450, 1980.

H. Merzendorfer, Chitin synthesis inhibitors: Old molecules and new developments, Insect Sci, vol.20, pp.121-138, 2013.

P. Wang and R. R. Granados, Calcofluor disrupts the midgut defense system in insects, Insect Biochem. Mol. Biol, vol.30, pp.135-143, 2000.

K. Y. Zhu, H. Merzendorfer, W. Zhang, J. Zhang, S. Muthukrishnan et al., Turnover, and Functions of Chitin in Insects, Annu. Rev. Entomol, vol.61, pp.177-196, 2016.

R. Zhu, K. Liu, J. Peng, H. Yang, and H. Hong, Optical brightener M2R destroys the peritrophic membrane of Spodoptera exigua (Lepidoptera: Noctuidae) larvae, Pest Manag. Sci, vol.63, pp.296-300, 2007.

M. Agbandje-mckenna, A. L. Llamas-saiz, F. Wang, P. Tattersall, and M. G. Rossmann, Functional implications of the structure of the murine parvovirus, minute virus of mice, Structure, vol.6, pp.1369-1381, 1998.

D. B. Tresnan, L. Southard, W. Weichert, J. Y. Sgro, and C. R. Parrish, Analysis of the cell and erythrocyte binding activities of the dimple and canyon regions of the canine parvovirus capsid, Virology, vol.211, pp.123-132, 1995.

T. Walski, K. De-schutter, E. J. Van-damme, and G. Smagghe, Diversity and functions of protein glycosylation in insects, Insect Biochem. Mol. Biol, vol.83, pp.21-34, 2017.

F. Salasc, D. Mutuel, S. Debaisieux, A. Perrin, T. Dupressoir et al., Role of the phosphatidylinositol-3-kinase/Akt/target of rapamycin pathway during ambidensovirus infection of insect cells, J. Gen. Virol, vol.97, pp.233-245, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01837297

B. Delmas, J. Gelfi, H. Sjöström, O. Noren, and H. Laude, Further characterization of aminopeptidase-N as a receptor for coronaviruses, Adv. Exp. Med. Biol, vol.342, pp.293-298, 1993.

B. X. Li, J. W. Ge, and Y. J. Li, Porcine aminopeptidase N is a functional receptor for the PEDV coronavirus, Virology, vol.365, pp.166-172, 2007.

L. B. Linz, S. Liu, N. P. Chougule, and B. C. Bonning, In Vitro Evidence Supports Membrane Alanyl Aminopeptidase N as a Receptor for a Plant Virus in the Pea Aphid Vector, J. Virol, vol.89, pp.11203-11212, 2015.

D. B. Tresnan, R. Levis, and K. V. Holmes, Feline aminopeptidase N serves as a receptor for feline, canine, porcine, and human coronaviruses in serogroup I, J. Virol, vol.70, pp.8669-8674, 1996.

M. S. Harper, T. L. Hopkins, and T. H. Czapla, Effect of wheat germ agglutinin on formation and structure of the peritrophic membrane in European corn borer (Ostrinia nubilalis) larvae, Tissue Cell, vol.30, pp.166-176, 1998.

A. Martinez, O. Simon, T. Williams, and P. Caballero, Effect of optical brighteners on the insecticidal activity of a nucleopolyhedrovirus in three instars of Spodoptera frugiperda, Entomol. Exp. Appl, vol.109, pp.139-146, 2003.

E. Chen, D. Kolosov, M. J. O'donnell, M. A. Erlandson, J. N. Mcneil et al., The Effect of Diet on Midgut and Resulting Changes in Infectiousness of AcMNPV Baculovirus in the Cabbage Looper, Trichoplusia ni. Front. Physiol, vol.9, 1348.

C. Ros, N. Bayat, R. Wolfisberg, and J. M. Almendral, Protoparvovirus Cell Entry, vol.9, p.313, 2017.

A. López-bueno, M. Rubio, N. Bryant, R. Mckenna, M. Agbandje-mckenna et al., Host-selected amino acid changes at the sialic acid binding pocket of the parvovirus capsid modulate cell binding affinity and determine virulence, J. Virol, vol.80, pp.1563-1573, 2006.

A. B. Allison, D. J. Kohler, A. Ortega, E. A. Hoover, D. M. Grove et al., Host-Specific Parvovirus Evolution in Nature Is Recapitulated by In Vitro Adaptation to Different Carnivore Species, PLoS Pathog, vol.10, 2014.

L. Y. Huang, S. Halder, and M. Agbandje-mckenna, Parvovirus glycan interactions. Curr. Opin. Virol, vol.7, pp.108-118, 2014.

C. Multeau, R. Froissart, A. Perrin, I. Castelli, M. Casartelli et al., Four amino acids of an insect densovirus capsid determine midgut tropism and virulence, J. Virol, vol.86, pp.5937-5941, 2012.

H. Merzendorfer and L. Zimoch, Chitin metabolism in insects: Structure, function and regulation of chitin synthases and chitinases, J. Exp. Biol, vol.206, pp.4393-4412, 2003.

F. H. Rodgers, M. Gendrin, C. A. Wyer, and G. K. Christophides, Microbiota-induced peritrophic matrix regulates midgut homeostasis and prevents systemic infection of malaria vector mosquitoes, PLoS Pathog, vol.13, 2017.

X. Song, M. Wang, L. Dong, H. Zhu, and J. Wang, PGRP-LD mediates A. stephensi vector competency by regulating homeostasis of microbiota-induced peritrophic matrix synthesis, PLoS Pathog, vol.14, 2018.

S. K. Kuss, G. T. Best, C. A. Etheredge, A. J. Pruijssers, J. M. Frierson et al., Intestinal microbiota promote enteric virus replication and systemic pathogenesis, Science, vol.334, pp.249-252, 2011.

A. K. Berger and B. A. Mainou, Interactions between Enteric Bacteria and Eukaryotic Viruses Impact the Outcome of Infection, Viruses, vol.10, 2018.

A. K. Berger, H. Yi, D. B. Kearns, and B. A. Mainou, Bacteria and bacterial envelope components enhance mammalian reovirus thermostability, PLoS Pathog, vol.13, 2017.

S. François, D. Filloux, P. Roumagnac, D. Bigot, P. Gayral et al., Discovery of parvovirus-related sequences in an unexpected broad range of animals, Sci. Rep, vol.6, 2016.

A. Behdenna, T. Lembo, O. Calatayud, S. Cleaveland, J. E. Halliday et al., Transmission ecology of canine parvovirus in a multi-host, multi-pathogen system, Proc. Biol. Sci, vol.286, 2019.

A. Handel, V. Akin, S. S. Pilyugin, V. Zarnitsyna, and R. Antia, How sticky should a virus be? The impact of virus binding and release on transmission fitness using influenza as an example, J. R. Soc. Interface, vol.11, 2014.

A. Kolliopoulou, C. N. Taning, G. Smagghe, and L. Swevers, Viral Delivery of dsRNA for Control of Insect Agricultural Pests and Vectors of Human Disease: Prospects and Challenges, Front. Physiol, vol.8, p.399, 2017.