M. T. Abreu, Toll-like receptor signalling in the intestinal epithelium: how bacterial recognition shapes intestinal function, Nat. Rev. Immunol, vol.10, pp.131-144, 2010.

M. Buettner and U. Bode, Lymph node dissection-understanding the immunological function of lymph nodes, Clin. Exp. Immunol, vol.169, pp.205-212, 2012.

A. Reboldi and J. G. Cyster, Peyer's patches: organizing B-cell responses at the intestinal frontier, Immunol. Rev, vol.271, pp.230-245, 2016.

R. M. Chu and C. H. Liu, Morphological and functional comparisons of Peyer's patches in different parts of the swine small intestine, Vet. Immunol. Immunopathol, vol.6, pp.391-403, 1984.

H. J. Rothkötter, R. Pabst, and M. Bailey, Lymphocyte migration in the intestinal mucosa: entry, transit and emigration of lymphoid cells and the influence of antigen, Vet. Immunol. Immunopathol, vol.72, pp.157-165, 1999.

M. Bailey, Z. Christoforidou, and M. C. Lewis, The evolutionary basis for differences between the immune systems of man, mouse, pig and ruminants, Vet. Immunol. Immunopathol, vol.152, pp.13-19, 2013.

J. K. Andersen, Systematic characterization of porcine ileal Peyer's patch, I. apoptosis-sensitive immature B cells are the predominant cell type, Immunology, vol.98, pp.612-621, 1999.

M. Yamamoto, Alternate mucosal immune system: organized Peyer's patches are not required for IgA responses in the gastrointestinal tract, J. Immunol, vol.164, pp.5184-5191, 2000.

M. Sinkora, Ileal Peyer's patches are not necessary for systemic B cell development and maintenance and do not contribute significantly to the overall B cell pool in swine, J. Immunol, vol.187, pp.5150-5161, 2011.

B. Levast, Differences in transcriptomic profile and IgA repertoire between jejunal and ileal Peyer's patches, Dev. Comp. Immunol, vol.34, pp.102-106, 2010.

P. Gourbeyre, Pattern recognition receptors in the gut: analysis of their expression along the intestinal tract and the crypt/villus axis, Physiol Rep, vol.3, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01194058

N. Mach, Extensive expression differences along porcine small intestine evidenced by transcriptome sequencing, PLoS ONE, vol.9, p.88515, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01193806

T. Maroilley, Deciphering the genetic regulation of peripheral blood transcriptome in pigs through expression genome-wide association study and allele-specific expression analysis, BMC Genomics, vol.18, p.967, 2017.
URL : https://hal.archives-ouvertes.fr/hal-02624041

A. M. Bolger, M. Lohse, and B. Usadel, Trimmomatic: a flexible trimmer for Illumina sequence data, Bioinformatics, vol.30, pp.2114-2120, 2014.

A. Yates, Nucleic Acids Res, vol.44, pp.710-716, 2016.

, ScIEntIfIc REpoRTS |, vol.8, p.9077, 2018.

S. Anders, P. T. Pyl, and W. Huber, HTSeq-a Python framework to work with high-throughput sequencing data, Bioinformatics, vol.31, pp.166-169, 2015.

M. D. Robinson, D. J. Mccarthy, and G. K. Smyth, edgeR: a Bioconductor package for differential expression analysis of digital gene expression data, Bioinformatics, vol.26, pp.139-140, 2010.

M. D. Robinson and A. Oshlack, A scaling normalization method for differential expression analysis of RNA-seq data, Genome Biology, vol.11, p.25, 2010.

A. Dobin, STAR: ultrafast universal RNA-seq aligner, Bioinformatics, vol.29, pp.15-21, 2013.

G. A. Van-der-auwera, From FastQ data to high confidence variant calls: the Genome Analysis Toolkit best practices pipeline, Curr Protoc Bioinformatics, vol.43, issue.11, pp.10-11, 2013.

P. Danecek, The variant call format and VCFtools, Bioinformatics, vol.27, pp.2156-2158, 2011.

C. T. Harvey, QuASAR: quantitative allele-specific analysis of reads, Bioinformatics, vol.31, pp.1235-1242, 2015.

S. F. Altschul, Gapped BLAST and PSI-BLAST: a new generation of protein database search programs, Nucleic Acids Res, vol.25, pp.3389-3402, 1997.

E. Eden, R. Navon, I. Steinfeld, D. Lipson, and Z. Yakhini, GOrilla: a tool for discovery and visualization of enriched GO terms in ranked gene lists, BMC Bioinformatics, vol.10, p.48, 2009.

M. Kanehisa and S. Goto, KEGG: kyoto encyclopedia of genes and genomes, Nucleic Acids Res, vol.28, pp.27-30, 2000.

J. Vandesompele, Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes, Genome Biol, vol.3, p.34, 2002.

F. Meurens, Commensal bacteria and expression of two major intestinal chemokines, TECK/CCL25 and MEC/CCL28, and their receptors, PLoS ONE, vol.2, p.677, 2007.

F. Meurens, Early immune response following Salmonella enterica subspecies enterica serovar Typhimurium infection in porcine jejunal gut loops, Vet. Res, vol.40, p.5, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00903086

T. Bruel, Epithelial induction of porcine suppressor of cytokine signaling 2 (SOCS2) gene expression in response to Entamoeba histolytica, Dev. Comp. Immunol, vol.34, pp.562-571, 2010.

K. J. Livak and T. D. Schmittgen, Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method, Methods, vol.25, pp.402-408, 2001.

J. K. Lunney, Advances in swine biomedical model genomics, Int. J. Biol. Sci, vol.3, pp.179-184, 2007.

H. Rothkötter, Anatomical particularities of the porcine immune system-a physician's view, Dev. Comp. Immunol, vol.33, pp.267-272, 2009.

M. Boeker, R. Pabst, and H. J. Rothkötter, Quantification of B, T and null lymphocyte subpopulations in the blood and lymphoid organs of the pig, Immunobiology, vol.201, pp.74-87, 1999.

C. M. Dvorak, Gene discovery and expression profiling in porcine Peyer's patch, Vet. Immunol. Immunopathol, vol.105, pp.301-315, 2005.

J. G. Machado, K. A. Hyland, C. M. Dvorak, and M. P. Murtaugh, Gene expression profiling of jejunal Peyer's patches in juvenile and adult pigs, Mamm. Genome, vol.16, pp.599-612, 2005.

H. J. Rothkötter, T. Huber, N. N. Barman, and R. Pabst, Lymphoid cells in afferent and efferent intestinal lymph: lymphocyte subpopulations and cell migration, Clin. Exp. Immunol, vol.92, pp.317-322, 1993.

H. J. Rothkötter, H. Ulbrich, and R. Pabst, The postnatal development of gut lamina propria lymphocytes: number, proliferation, and T and B cell subsets in conventional and germ-free pigs, Pediatr. Res, vol.29, pp.237-242, 1991.

T. Okada, Chemokine requirements for B cell entry to lymph nodes and Peyer's patches, J. Exp. Med, vol.196, pp.65-75, 2002.

W. W. Agace and K. D. Mccoy, Regionalized Development and Maintenance of the Intestinal Adaptive Immune Landscape, Immunity, vol.46, pp.532-548, 2017.

C. B. Jago, J. Yates, N. O. Câmara, R. I. Lechler, and G. Lombardi, Differential expression of CTLA-4 among T cell subsets, Clin. Exp. Immunol, vol.136, pp.463-471, 2004.

B. A. Zabel, Human G protein-coupled receptor GPR-9-6/CC chemokine receptor 9 is selectively expressed on intestinal homing T lymphocytes, mucosal lymphocytes, and thymocytes and is required for thymus-expressed chemokine-mediated chemotaxis, J. Exp. Med, vol.190, pp.1241-1256, 1999.

J. J. O'shea and W. E. Paul, Mechanisms underlying lineage commitment and plasticity of helper CD4+ T cells, Science, vol.327, pp.1098-1102, 2010.

C. S. Ma, T. G. Phan, and . Here, there and everywhere: T follicular helper cells on the move, Immunology, vol.152, pp.382-387, 2017.

R. R. Ramiscal and C. G. Vinuesa, T-cell subsets in the germinal center, Immunol. Rev, vol.252, pp.146-155, 2013.

M. Tsuji, Preferential generation of follicular B helper T cells from Foxp3+ T cells in gut Peyer's patches, Science, vol.323, pp.1488-1492, 2009.

L. Perruzza, T Follicular Helper Cells Promote a Beneficial Gut Ecosystem for Host Metabolic Homeostasis by Sensing Microbiota-Derived Extracellular ATP, Cell Rep, vol.18, pp.2566-2575, 2017.

N. N. Barman, A. T. Bianchi, R. J. Zwart, R. Pabst, and H. J. Rothkötter, Jejunal and ileal Peyer's patches in pigs differ in their postnatal development, Anat. Embryol, vol.195, pp.41-50, 1997.

J. W. Müller-schoop and R. A. Good, Functional studies of Peyer's patches: evidence for their participation in intestinal immune responses, J. Immunol, vol.114, pp.1757-1760, 1975.

Y. He, B. Vogelstein, V. E. Velculescu, N. Papadopoulos, and K. W. Kinzler, The antisense transcriptomes of human cells, Science, vol.322, pp.1855-1857, 2008.

C. Chen, A genome-wide investigation of expression characteristics of natural antisense transcripts in liver and muscle samples of pigs, PLoS ONE, vol.7, p.52433, 2012.

A. J. Chamberlain, Extensive variation between tissues in allele specific expression in an outbred mammal, BMC Genomics, vol.16, p.993, 2015.

J. J. Crowley, Analyses of allele-specific gene expression in highly divergent mouse crosses identifies pervasive allelic imbalance, Nat. Genet, vol.47, pp.353-360, 2015.

G. Consortium, Human genomics. The Genotype-Tissue Expression (GTEx) pilot analysis: multitissue gene regulation in humans, Science, vol.348, pp.648-660, 2015.

G. Consortium, The Genotype-Tissue Expression (GTEx) project, Nat. Genet, vol.45, pp.580-585, 2013.

C. Gtex, Genetic effects on gene expression across human tissues, Nature, vol.550, pp.204-213, 2017.

, ScIEntIfIc REpoRTS |, vol.8, p.9077, 2018.

, Experiments were funded by the SUS-FLORA project (ANR-10-GENM-016) of the French National Agency and internal funds of INRA's Animal Genetics Division