G. Wu, Amino acids: metabolism, functions, and nutrition, Amino Acids, vol.37, pp.1-17, 2009.

W. Ren, Effect of dietary arginine supplementation on reproductive performance of mice with porcine circovirus type 2 infection, Amino Acids, vol.42, pp.2089-2094, 2012.

L. Chantranupong, R. L. Wolfson, and D. M. Sabatini, Review nutrient-sensing mechanisms across evolution, Cell, vol.161, pp.67-83, 2015.

J. Gallinetti, E. Harputlugil, and J. R. Mitchell, Amino acid sensing in dietaryrestriction-mediated longevity: roles of signal-transducing kinases GCN2 and TOR, Biochem. J, vol.449, pp.1-10, 2013.

J. H. Sang and R. C. King, Nutritional requirements of axenically cultured Drosophila melanogaster adults, J. Exp. Biol, vol.38, pp.793-809, 1961.

W. C. Lee and C. A. Micchelli, Development and characterization of a chemically defined food for Drosophila, PLoS ONE, vol.8, pp.1-10, 2013.

N. Toshima and T. Tanimura, Taste preference for amino acids is dependent on internal nutritional state in Drosophila melanogaster, J. Exp. Biol, vol.215, pp.2827-2832, 2012.

N. Kudow, Preference for and learning of amino acids in larval Drosophila, Biol. Open, vol.6, pp.365-369, 2017.

C. Ribeiro and B. J. Dickson, Sex peptide receptor and neuronal TOR/S6K signaling modulate nutrient balancing in Drosophila, Curr. Biol, vol.20, pp.1000-1005, 2010.

K. Iwasaki, T. Kasahara, and M. Sato, Gustatory effectiveness of amino acids in mice: behavioral and neurophysiological studies, Physiol. Behav, vol.34, pp.531-542, 1985.

G. Nelson, An amino-acid taste receptor, Nature, vol.416, pp.199-202, 2002.

V. Croset, M. Schleyer, J. R. Arguello, B. Gerber, and R. Benton, A molecular and neuronal basis for amino acid sensing in the Drosophila larva, Sci. Rep, vol.6, pp.1-13, 2016.

A. Ganguly, A molecular and cellular context-dependent role for Ir76b in detection of amino acid taste, CellReports, vol.18, pp.737-750, 2017.

Y. C. Chen and A. Dahanukar, Molecular and cellular organization of taste neurons in adult Drosophila pharynx, Cell Rep, vol.21, pp.2978-2991, 2017.

J. D. Laughlin, T. S. Ha, D. N. Jones, and D. P. Smith, Activation of pheromone-sensitive neurons is mediated by conformational activation of pheromone-binding protein, Cell, vol.133, pp.1255-1265, 2008.

C. Gomez-diaz, J. H. Reina, C. Cambillau, and R. Benton, Ligands for pheromone-sensing neurons are not conformationally activated odorant binding proteins, PLoS Biol, vol.11, p.1001546, 2013.

A. Bentzur, Odorant binding protein 69a connects social interaction to modulation of social responsiveness in Drosophila, PLoS Genet, vol.14, p.1007328, 2018.

R. G. Vogt and L. M. Riddiford, Pheromone binding and inactivation by moth antennae, Nature, vol.293, pp.161-163, 1981.

K. Galindo and D. P. Smith, A large family of divergent Drosophila odorantbinding proteins expressed in gustatory and olfactory sensilla, Genetics, vol.159, pp.1059-1072, 2001.

S. R. Shanbhag, Expression mosaic of odorant-binding proteins in Drosophila olfactory organs, Microsc. Res. Tech, vol.55, pp.297-306, 2001.

M. P. Mckenna, D. S. Hekmat-scafe, P. Gaines, and J. R. Carlson, Putative drosophila pheromone-binding proteins expressed in a subregion of the olfactory system, J. Biol. Chem, vol.269, pp.16340-16347, 1994.

C. W. Pikielny, G. Hasan, F. Rouyer, and M. Rosbash, Members of a family of drosophila putative odorant-binding proteins are expressed in different subsets of olfactory hairs, Neuron, vol.12, pp.35-49, 1994.

J. Yasukawa, S. Tomioka, T. Aigaki, and T. Matsuo, Evolution of expression patterns of two odorant-binding protein genes, Obp57d and Obp57e, in Drosophila, Gene, vol.467, pp.25-34, 2010.

J. Fan, F. Francis, Y. Liu, J. L. Chen, and D. F. Cheng, An overview of odorantbinding protein functions in insect peripheral olfactory reception, Genet. Mol. Res, vol.10, pp.3056-3069, 2011.

N. F. Brito, M. F. Moreira, and A. C. Melo, A look inside odorant-binding proteins in insect chemoreception, J. Insect Physiol, vol.95, pp.51-65, 2016.

P. Pelosi and R. Maida, Odorant-binding proteins in insects, Comp. Biochem. Physiol. B-Biochem. Mol. Biol, vol.111, pp.503-514, 1995.

P. Pelosi, I. Iovinella, J. Zhu, G. Wang, and F. R. Dani, Beyond chemoreception: diverse tasks of soluble olfactory proteins in insects, Biol. Rev, vol.93, pp.184-200, 2018.

Y. T. Jeong, An odorant-binding protein required for suppression of sweet taste by bitter chemicals, Neuron, vol.79, pp.725-737, 2013.

J. S. Sun, Humidity response depends on the small soluble protein Obp59a in Drosophila, vol.7, p.39249, 2018.

D. S. Hekmat-scafe, C. R. Scafe, A. J. Mckinney, and M. A. Tanouye, Genomewide analysis of the odorant-binding protein gene family in Drosophila melanogaster, Genome Res, vol.12, pp.1357-1369, 2002.

L. Briand, C. Nespoulous, J. C. Huet, M. Takahashi, and J. C. Pernollet, Ligand binding and physico-chemical properties of ASP2, a recombinant odorantbinding protein from honeybee (Apis mellifera L.), Eur. J. Biochem, vol.268, pp.752-760, 2001.

V. Campanacci, S. Longhi, P. Nagnan-le-meillour, C. Cambillau, and M. Tegoni, Recombinant pheromone binding protein 1 from Mamestra brassicae (MbraPBP1), Eur. J. Biochem, vol.264, pp.707-716, 1999.

J. J. Zhou, Odorant-binding proteins in insects, Vitam. Horm, vol.83, pp.241-272, 2010.

C. Mitri, Plant insecticide L-canavanine repels Drosophila via the insect orphan GPCR DmX, PLoS Biol, vol.7, p.1000147, 2009.
URL : https://hal.archives-ouvertes.fr/inserm-00707643

T. Hinton, The effects of arginine, ornithine and citrulline on the growth of Drosophila, Arch. Biochem. Biophys, vol.62, pp.78-85, 1956.

H. Wieczorek and G. Wolff, The labellar sugar receptor of Drosophila, J. Comp. Physiol. A, vol.164, pp.825-834, 1989.

J. Park and J. R. Carlson, Physiological responses of the Drosophila labellum to amino acids, J. Neurogenet, vol.32, pp.27-36, 2017.

B. Rost, Twilight zone of protein sequence alignments, Protein Eng, vol.12, pp.85-94, 1999.

N. K. Larter, J. S. Sun, and J. R. Carlson, Organization and function of Drosophila odorant binding proteins, Elife, vol.5, p.20242, 2016.

K. Ozaki, A gustatory receptor involved in host plant recognition for oviposition of a swallowtail butterfly, Nat. Commun, vol.2, p.542, 2011.
URL : https://hal.archives-ouvertes.fr/hal-01000500

S. Kohl, M. Behrens, A. Dunkel, T. Hofmann, and W. Meyerhof, Amino acids and peptides activate at least five members of the human bitter taste receptor family, J. Agric. Food Chem, vol.61, pp.53-60, 2013.

A. Bassoli, G. Borgonovo, F. Caremoli, and G. Mancuso, The taste of D-and Lamino acids: In vitro binding assays with cloned human bitter (TAS2Rs) and sweet (TAS1R2/TAS1R3) receptors, Food Chem, vol.150, pp.27-33, 2014.

M. Hiroi, F. Marion-poll, and T. Tanimura, Differentiated response to sugars among labellar chemosensilla in Drosophila, Zool. Sci, vol.19, pp.1009-1018, 2002.

K. Steck, Internal amino acid state modulates yeast taste neurons to support protein homeostasis in Drosophila, Elife, vol.7, p.31625, 2018.

H. K. Inagaki, Visualizing neuromodulation In vivo: TANGO-mapping of dopamine signaling reveals appetite control of sugar sensing, Cell, vol.148, pp.583-595, 2012.

Q. Liu, Branch-specific plasticity of a bifunctional dopamine circuit encodes protein hunger. Sci. (80-.), vol.356, pp.534-539, 2017.

J. Sun, Drosophila FIT is a protein-specific satiety hormone essential for feeding control, Nat. Commun, vol.8, p.14161, 2017.

M. W. Pfaffl, G. W. Horgan, and L. Dempfle, Relative expression software tool (REST ©) for group-wise comparison and statistical analysis of relative expression results in real-time PCR, Nucl. Acids Res, vol.30, pp.1-10, 2002.

L. Briand, Optimization of the production of a honeybee odorantbinding protein by Pichia pastoris, Protein Expr. Purif, vol.15, pp.362-369, 1999.
URL : https://hal.archives-ouvertes.fr/hal-01595446

H. Schägger and -. Tricine, Nat. Protoc, vol.1, pp.16-22, 2006.

A. Darwish-marie, Effect of polymorphisms on ligand binding by mouse major urinary proteins, Protein Sci, vol.10, pp.411-417, 2001.

J. William and W. , Prandiology of Drosophila and the CAFE assay, Proc. Natl. Acad. Sci, vol.104, pp.8253-8256, 2007.

R. Delventhal, A. Kiely, and J. R. Carlson, Electrophysiological recording from Drosophila labellar taste sensilla, J. Vis. Exp, pp.1-8, 2014.

E. S. Hodgson, J. Y. Lettvin, and K. D. Roeder, Physiology of a primary chemoreceptor unit. Sci, vol.122, pp.417-418, 1955.

J. W. Wang, Two-photon calcium imaging reveals an odor-evoked map of activity in the fly brain, Cell, vol.112, pp.271-282, 2003.

M. Hiroi, N. Meunier, F. Marion-poll, and T. Tanimura, Two antagonistic gustatory receptor neurons responding to sweet-salty and bitter taste in Drosophila, J. Neurobiol, vol.61, pp.333-342, 2004.

C. Montell, A taste of the Drosophila gustatory receptors, Curr. Opin. Neurobiol, vol.19, pp.345-353, 2009.

L. B. Vosshall and R. F. Stocker, Molecular architecture of smell and taste in Drosophila, Annu. Rev. Neurosci, vol.30, pp.505-533, 2007.

R. F. Stocker, The organization of the chemosensory system in Drosophila melanogaster: a review, Cell Tissue Res, vol.275, pp.3-26, 1994.