B. Alunni, Z. Kevei, M. Redondo-nieto, A. Kondorosi, P. Mergaert et al., Genomic organization and evolutionary insights on GRP and NCR genes, two large nodule-specific gene families in Medicago truncatula, Molecular Plant Microbe Interactions, vol.20, pp.1138-1148, 2007.
URL : https://hal.archives-ouvertes.fr/hal-00184651

I. Becquart-de-kozak, B. L. Reuhs, D. Buffard, C. Breda, J. S. Kim et al., Role of the K-Antigen Subgroup of Capsular Polysaccharides in the Early Recognition Process Between Rhizobium meliloti and Alfalfa Leaves, Molecular Plant-Microbe Interactions, vol.10, pp.114-123, 1997.

F. Berrabah, M. Bourcy, and A. Eschstruth, A nonRD receptorlike kinase prevents nodule early senescence and defense-like reactions during symbiosis, New Phytologist, vol.203, pp.1305-1314, 2014.
URL : https://hal.archives-ouvertes.fr/hal-02410361

F. Berrabah, M. Bourcy, A. Cayrel, A. Eschstruth, S. Mondy et al., Growth conditions determine the DNF2 requirement for symbiosis, PLoS One, vol.9, 2014.
URL : https://hal.archives-ouvertes.fr/hal-02410365

C. Bobik, E. Meilhoc, and J. Batut, FixJ: a major regulator of the oxygen limitation response and late symbiotic functions of Sinorhizobium meliloti, Journal of Bacteriology, vol.188, pp.4890-4902, 2006.

A. Boualem, P. Laporte, M. Jovanovic, C. Laffont, J. Plet et al., MicroRNA166 controls root and nodule development in Medicago truncatula, Plant Journal, vol.54, pp.876-887, 2008.
URL : https://hal.archives-ouvertes.fr/hal-00856250

M. Bourcy, L. Brocard, C. I. Pislariu, V. Cosson, P. Mergaert et al., Medicago truncatula DNF2 is a PI-PLC-XD-containing protein required for bacteroid persistence and prevention of nodule early senescence and defense-like reactions, New Phytologist, vol.197, pp.1250-1261, 2013.
URL : https://hal.archives-ouvertes.fr/hal-02403239

X. Cheng, M. Wang, H. K. Lee, M. Tadege, P. Ratet et al., An efficient reverse genetics platform in the model legume Medicago truncatula, New Phytologist, vol.201, pp.1065-1076, 2014.

R. Dixon and D. Kahn, Genetic regulation of biological nitrogen fixation, Nature Reviews Microbiology, vol.2, pp.621-631, 2004.
URL : https://hal.archives-ouvertes.fr/hal-01213169

A. Domonkos, B. Horvath, J. F. Marsh, G. Halasz, F. Ayaydin et al., The identification of novel loci required for appropriate nodule development in Medicago truncatula, BMC Plant Biology, vol.13, p.157, 2013.

D. W. Ehrhardt, E. M. Atkinson, and S. R. Long, Depolarization of alfalfa root hair membrane potential by Rhizobium meliloti Nod factors, Science, vol.256, pp.998-1000, 1992.

G. P. Ferguson, R. M. Roop, and G. C. Walker, Deficiency of a Sinorhizobium meliloti bacA mutant in alfalfa symbiosis correlates with alteration of the cell envelope, Journal of Bacteriology, vol.184, pp.5625-5632, 2002.

H. M. Fischer, A. Alvarez-morales, and H. Hennecke, The pleiotropic nature of symbiotic regulatory mutants: Bradyrhizobium japonicum nifA gene is involved in control of nif gene expression and formation of determinate symbiosis, EMBO Journal, vol.5, pp.1165-1173, 1986.

F. Galibert, T. M. Finan, and S. R. Long, The composite genome of the legume symbiont Sinorhizobium meliloti, Science, vol.293, pp.668-672, 2001.
URL : https://hal.archives-ouvertes.fr/hal-00427172

Z. Gong, J. Zhu, G. Yu, and H. Zou, Disruption of nifA gene influences multiple cellular processes in Sinorhizobium meliloti, Journal of Genetics and Genomics, vol.34, pp.783-789, 2007.

S. Gonzalez-rizzo, M. Crespi, and F. Frugier, The Medicago truncatula CRE1 cytokinin receptor regulates lateral root development and early symbiotic interaction with Sinorhizobium meliloti, Plant Cell, vol.18, pp.2680-2693, 2006.
URL : https://hal.archives-ouvertes.fr/hal-00123705

C. Gough and C. Jacquet, Nod factor perception protein carries weight in biotic interactions, Trends in Plant Science, vol.18, pp.566-574, 2013.
URL : https://hal.archives-ouvertes.fr/hal-02646643

A. F. Haag, M. Baloban, and M. Sani, Protection of Sinorhizobium against host cysteine-rich antimicrobial peptides is critical for symbiosis, PLoS Biology, vol.9, 2011.

K. M. Jones, N. Sharopova, D. P. Lohar, J. Q. Zhang, K. A. Vandenbosch et al., Differential response of the plant Medicago truncatula to its symbiont Sinorhizobium meliloti or an exopolysaccharide-deficient mutant, Proceedings of the National Academy of Sciences of the United States of America 105, pp.704-709, 2008.

B. Koch and H. J. Evans, Reduction of acetylene to ethylene by soybean root nodules, Plant Physiology, vol.41, pp.1748-1750, 1966.

E. Kondorosi, Z. Banfalvi, and A. Kondorosi, Physical and genetic analysis of a symbiotic region of Rhizobium meliloti: Identification of nodulation genes, Molecular and General Genetics, vol.193, pp.445-452, 1984.

L. Krall, U. Wiedemann, G. Unsin, S. Weiss, N. Domke et al., Detergent extraction identifies different VirB protein subassemblies of the type IV secretion machinery in the membranes of Agrobacterium tumefaciens, Proceedings of the National Academy of Sciences of the United States of America, vol.99, pp.11405-11410, 2002.

Y. Liang, Y. Cao, K. Tanaka, S. Thibivilliers, J. Wan et al., Nonlegumes respond to rhizobial Nod factors by suppressing the innate immune response, Science, vol.341, pp.1384-1387, 2013.

E. Limpens, R. Mirabella, E. Fedorova, C. Franken, H. Franssen et al., Formation of organelle-like N2-fixing symbiosomes in legume root nodules is controlled by DMI2, Proceedings of the National Academy of Sciences of the United States of America, vol.102, pp.10375-10380, 2005.

E. Limpens, S. Moling, G. Hooiveld, P. A. Pereira, T. Bisseling et al., Cell-and tissue-specific transcriptome analyses of Medicago truncatula root nodules, PLoS One, vol.8, p.64377, 2013.

M. Lopez-gomez, N. Sandal, J. Stougaard, and T. Boller, Interplay of flg22-induced defence responses and nodulation in Lotus japonicus, Journal of Experimental Botany, vol.63, pp.393-401, 2012.

P. Mergaert, K. Nikovics, Z. Kelemen, N. Maunoury, D. Vaubert et al., A novel family in Medicago truncatula consisting of more than 300 nodule-specific genes coding for small, secreted polypeptides with conserved cysteine motifs, Plant Physiology, vol.132, pp.161-173, 2003.
URL : https://hal.archives-ouvertes.fr/hal-00134878

P. Mergaert, T. Uchiumi, and B. Alunni, Eukaryotic control on bacterial cell cycle and differentiation in the Rhizobium-legume symbiosis, Proceedings of the National Academy of Sciences of the United States of America, vol.103, pp.5230-5235, 2006.
URL : https://hal.archives-ouvertes.fr/hal-00118557

R. M. Mitra and S. R. Long, Plant and bacterial symbiotic mutants define three transcriptionally distinct stages in the development of the Medicago truncatula/Sinorhizobium meliloti symbiosis, Plant Physiology, vol.134, pp.595-604, 2004.

S. Okazaki, T. Kaneko, S. Sato, and K. Saeki, Hijacking of leguminous nodulation signaling by the rhizobial type III secretion system, Proceedings of the National Academy of Sciences of the United States of America, vol.110, pp.17131-17136, 2013.

R. V. Penmetsa and D. R. Cook, A Legume Ethylene-Insensitive Mutant Hyperinfected by Its Rhizobial Symbiont, Science, vol.275, pp.527-530, 1997.

C. I. Pislariu, J. D. Murray, and J. Wen, A Medicago truncatula tobacco retrotransposon insertion mutant collection with defects in nodule development and symbiotic nitrogen fixation, Plant Physiology, vol.159, pp.1686-1699, 2012.

P. Putnoky, E. Grosskopf, D. T. Ha, G. B. Kiss, and A. Kondorosi, Rhizobium fix genes mediate at least two communication steps in symbiotic nodule development, The Journal of Cell Biology, vol.106, pp.597-607, 1988.

P. Ratet, J. Wen, V. Cosson, M. Tadege, and K. S. Mysore, Tnt1 Induced Mutations in Medicago: Characterization and Applications. The Handbook of Plant Mutation Screening, pp.83-99, 2010.

S. Sinharoy, I. Torres-jerez, K. Bandyopadhyay, A. Kereszt, C. I. Pislariu et al., The C2H2 transcription factor regulator of symbiosome differentiation represses transcription of the secretory pathway gene VAMP721a and promotes symbiosome development in Medicago truncatula, Plant Cell, vol.25, pp.3584-3601, 2013.

G. Stacey, C. B. Mcalvin, S. Y. Kim, J. Olivares, M. J. Soto et al., Effects of endogenous salicylic acid on nodulation in the model legumes Lotus japonicus and Medicago truncatula, Plant Physiology, vol.141, pp.671-680, 2006.

J. Sun, V. Cardoza, D. M. Mitchell, L. Bright, G. Oldroyd et al., Crosstalk between jasmonic acid, ethylene and Nod factor signaling allows integration of diverse inputs for regulation of nodulation, The Plant Journal, vol.46, pp.961-970, 2006.

M. Tadege, T. L. Wang, J. Wen, P. Ratet, and K. S. Mysore, Mutagenesis and beyond! Tools for understanding legume biology, Plant Physiology, vol.151, pp.978-984, 2009.

M. Udvardi, P. Poole, W. Van-de-velde, G. Zehirov, and A. Szatmari, Plant peptides govern terminal differentiation of bacteria in symbiosis, Annual Review of Plant Biology, vol.64, pp.1122-1126, 2010.

J. Vasse, F. De-billy, and G. Truchet, Abortion of infection during the Rhizobium meliloti-alfalfa symbiotic interaction is accompanied by a hypersensitive reaction, The Plant Journal, vol.4, pp.555-566, 1993.

D. Wang, J. Griffitts, C. Starker, E. Fedorova, E. Limpens et al., A nodule-specific protein secretory pathway required for nitrogen-fixing symbiosis, Science, vol.327, pp.1126-1129, 2010.

S. Yang, F. Tang, M. Gao, H. B. Krishnan, and H. Zhu, R gene-controlled host specificity in the legume-rhizobia symbiosis, Proceedings of the National Academy of Sciences of the United States of America, vol.107, pp.18735-18740, 2010.

N. D. Young, F. Debelle, and G. E. Oldroyd, The Medicago genome provides insight into the evolution of rhizobial symbioses, Nature, vol.480, pp.520-524, 2011.
URL : https://hal.archives-ouvertes.fr/hal-02652790

J. L. Zimmerman, W. W. Szeto, and F. M. Ausubel, Molecular characterization of Tn5-induced symbiotic (Fix-) mutants of Rhizobium meliloti, Journal of Bacteriology, vol.156, pp.1025-1034, 1983.