A. Puppo, K. Groten, F. Bastian, R. Carzaniga, and M. Soussi, Legume nodule senescence: roles for redox and hormone signalling in the orchestration of the natural aging process, New Phytol, vol.165, pp.683-701, 2005.
URL : https://hal.archives-ouvertes.fr/hal-01943161

E. Limpens, S. Moling, G. Hooiveld, P. A. Pereira, and T. Bisseling, Celland tissue-specific transcriptome analyses of Medicago truncatula root nodules, PLoS One, vol.8, p.64377, 2013.

M. Charpentier and G. Oldroyd, How close are we to nitrogen-fixing cereals?, Curr Opin Plant Biol, vol.13, pp.556-564, 2010.

M. Bourcy, F. Berrabah, P. Ratet, and B. Gourion, Failure of self-control: Defense-like reactions during legume/rhizobia symbiosis, Plant Signal Behav, vol.8, 2013.

M. Bourcy, L. Brocard, C. I. Pislariu, V. Cosson, and P. Mergaert, Medicago truncatula DNF2 is a PI-PLC-XD-containing protein required for bacteroid persistence and prevention of nodule early senescence and defense-like reactions, New Phytol, vol.197, pp.1250-1261, 2013.
URL : https://hal.archives-ouvertes.fr/hal-02403239

C. I. Pislariu and R. Dickstein, An IRE-like AGC kinase gene, MtIRE, has unique expression in the invasion zone of developing root nodules in Medicago truncatula, Plant Physiol, vol.144, pp.682-694, 2007.

W. Van-de-velde, G. Zehirov, A. Szatmari, M. Debreczeny, and H. Ishihara, Plant peptides govern terminal differentiation of bacteria in symbiosis, Science, vol.327, pp.1122-1126, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00856104

C. Gough and C. Jacquet, Nod factor perception protein carries weight in biotic interactions, Trends Plant Sci, 2013.
URL : https://hal.archives-ouvertes.fr/hal-02646643

T. Rey, A. Nars, M. Bonhomme, A. Bottin, and S. Huguet, NFP, a LysM protein controlling Nod factor perception, also intervenes in Medicago truncatula resistance to pathogens, New Phytol, vol.198, pp.875-886, 2013.
URL : https://hal.archives-ouvertes.fr/hal-02646356

C. Zamioudis and C. M. Pieterse, Modulation of host immunity by beneficial microbes, Mol Plant Microbe Interact, vol.25, pp.139-150, 2012.

S. Peleg-grossman, Y. Golani, Y. Kaye, N. Melamed-book, and A. Levine, NPR1 protein regulates pathogenic and symbiotic interactions between Rhizobium and legumes and non-legumes, PLoS One, vol.4, p.8399, 2009.

S. Peleg-grossman, N. Melamed-book, and A. Levine, ROS production during symbiotic infection suppresses pathogenesis-related gene expression, Plant Signal Behav, vol.7, pp.409-415, 2012.

M. Lopez-gomez, N. Sandal, J. Stougaard, and T. Boller, Interplay of flg22-induced defence responses and nodulation in Lotus japonicus, J Exp Bot, vol.63, pp.393-401, 2012.

G. Stacey, C. B. Mcalvin, S. Y. Kim, J. Olivares, and M. J. Soto, Effects of endogenous salicylic acid on nodulation in the model legumes Lotus japonicus and Medicago truncatula, Plant Physiol, vol.141, pp.1473-1481, 2006.

A. Mithöfer, Suppression of plant defence in rhizobia-legume symbiosis, Trends Plant Sci, vol.7, pp.440-444, 2002.

M. Reguera, I. Bonilla, and L. Bolanos, Boron deficiency results in induction of pathogenesis-related proteins from the PR-10 family during the legume-rhizobia interaction, Journal of Plant Physiology, vol.167, pp.625-632, 2010.

R. L. Berendsen, C. M. Pieterse, and P. A. Bakker, The rhizosphere microbiome and plant health, Trends Plant Sci, vol.17, pp.478-486, 2012.

Z. Q. Fu and X. Dong, Systemic acquired resistance: turning local infection into global defense, Annu Rev Plant Biol, vol.64, pp.839-863, 2013.

B. Hoffmann, T. H. Trinh, J. Leung, A. Kondorosi, and E. Kondorosi, A new Medicago truncatula line with superior in vitro regeneration, transformation, and symbiotic properties isolated through cell culture selection, Mol Plant Microbe Interact, vol.10, pp.307-315, 1997.

N. D. Young, F. Debelle, G. E. Oldroyd, R. Geurts, and S. B. Cannon, The Medicago genome provides insight into the evolution of rhizobial symbioses, Nature, vol.480, pp.520-524, 2011.
URL : https://hal.archives-ouvertes.fr/hal-02652790

R. M. Mitra and S. R. Long, Plant and bacterial symbiotic mutants define three transcriptionally distinct stages in the development of the Medicago truncatula/ Sinorhizobium meliloti symbiosis, Plant Physiol, vol.134, pp.595-604, 2004.

C. I. Pislariu, J. D. Murray, J. Wen, V. Cosson, and R. R. Muni, A Medicago truncatula tobacco retrotransposon insertion mutant collection with defects in nodule development and symbiotic nitrogen fixation, Plant Physiol, vol.159, pp.1686-1699, 2012.

C. G. Starker, A. L. Parra-colmenares, L. Smith, R. M. Mitra, and S. R. Long, Nitrogen fixation mutants of Medicago truncatula fail to support plant and bacterial symbiotic gene expression, Plant Physiol, vol.140, pp.671-680, 2006.

D. W. Ehrhardt, E. M. Atkinson, and S. R. Long, Depolarization of alfalfa root hair membrane potential by Rhizobium meliloti Nod factors, Science, vol.256, pp.998-1000, 1992.

E. Kondorosi, Z. Banfalvi, and A. Kondorosi, Physical and genetic analysis of a symbiotic region of Rhizobium meliloti: Identification of nodulation genes, Mol Gen Genet, vol.193, pp.445-452, 1984.

F. Galibert, T. M. Finan, S. R. Long, A. Puhler, and P. Abola, The composite genome of the legume symbiont Sinorhizobium meliloti, Science, vol.293, pp.668-672, 2001.
URL : https://hal.archives-ouvertes.fr/hal-00427172

G. P. Ferguson, R. M. Roop, and G. C. Walker, Deficiency of a Sinorhizobium meliloti bacA mutant in alfalfa symbiosis correlates with alteration of the cell envelope, Journal of Bacteriology, vol.184, pp.5625-5632, 2002.

J. Howieson and M. Ewing, Acid tolerance in the Rhizobium meliloti-Medicago symbiosis, Australian Journal of Agricultural Research, vol.37, pp.55-64, 1986.

L. Krall, U. Wiedemann, G. Unsin, S. Weiss, and N. Domke, Detergent extraction identifies different VirB protein subassemblies of the type IV secretion machinery in the membranes of Agrobacterium tumefaciens, Proc Natl Acad Sci U S A, vol.99, pp.11405-11410, 2002.

D. M. Weller, D. V. Mavrodi, J. A. Van-pelt, C. Pieterse, and L. C. Van-loon, Induced systemic resistance in Arabidopsis thaliana against Pseudomonas syringae pv. tomato by 2,4-diacetylphloroglucinol-producing Pseudomonas fluorescens, Phytopathology, vol.102, pp.403-412, 2012.

E. O. King, M. K. Ward, and D. E. Raney, Two simple media for the demonstration of pyocyanin and fluorescin, J Lab Clin Med, vol.44, pp.301-307, 1954.

F. Molouba, J. Lorquin, A. Willems, B. Hoste, and G. E. , Photosynthetic bradyrhizobia from Aeschynomene spp. are specific to stemnodulated species and form a separate 16S ribosomal DNA restriction fragment length polymorphism group, Appl Environ Microbiol, vol.65, pp.3084-3094, 1999.

G. E. Hannibal, L. Fardoux, J. Vermeglio, A. Dreyfus, and B. , Effect of Bradyrhizobium photosynthesis on stem nodulation of Aeschynomene sensitiva, Proc Natl Acad Sci U S A, vol.97, pp.14795-14800, 2000.

E. Welchen and D. H. Gonzalez, Differential expression of the Arabidopsis cytochrome c genes Cytc-1 and Cytc-2. Evidence for the involvement of TCPdomain protein-binding elements in anther-and meristem-specific expression of the Cytc-1 gene, Plant Physiol, vol.139, pp.88-100, 2005.

J. Vasse, F. De-billy, and G. Truchet, Abortion of infection during the Rhizobium meliloti-alfalfa symbiotic interaction is accompanied by a hypersensitive reaction, The Plant Journal, vol.4, pp.555-566, 1993.

B. Koch and H. J. Evans, Reduction of acetylene to ethylene by soybean root nodules, Plant Physiol, vol.41, pp.1748-1750, 1966.

D. A. Samac, S. Penuela, J. A. Schnurr, E. N. Hunt, and D. Foster-hartnett, Expression of coordinately regulated defence response genes and analysis of their role in disease resistance in Medicago truncatula, Mol Plant Pathol, vol.12, pp.786-798, 2011.

L. L. Gao, J. P. Anderson, J. P. Klingler, R. M. Nair, and O. R. Edwards, Involvement of the octadecanoid pathway in bluegreen aphid resistance in Medicago truncatula, Mol Plant Microbe Interact, vol.20, pp.82-93, 2007.

A. Nars, T. Rey, C. Lafitte, S. Vergnes, and S. Amatya, An experimental system to study responses of Medicago truncatula roots to chitin oligomers of high degree of polymerization and other microbial elicitors, Plant Cell Rep, vol.32, pp.489-502, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00903494

K. S. Century, A. D. Shapiro, P. P. Repetti, D. Dahlbeck, and E. Holub, NDR1, a pathogen-induced component required for Arabidopsis disease resistance, Science, vol.278, pp.1963-1965, 1997.

A. F. Haag, M. Baloban, M. Sani, B. Kerscher, and O. Pierre, Protection of Sinorhizobium against host cysteine-rich antimicrobial peptides is critical for symbiosis, PLoS Biology, vol.9, p.1001169, 2011.

J. Glazebrook, A. Ichige, and G. C. Walker, A Rhizobium meliloti homolog of the Escherichia coli peptide-antibiotic transport protein SbmA is essential for bacteroid development, Genes & Development, vol.7, pp.1485-1497, 1993.

S. Cluzet, C. Torregrosa, C. Jacquet, C. Lafitte, and J. Fournier, Gene expression profiling and protection of Medicago truncatula against a fungal infection in response to an elicitor from green algae Ulva spp, Plant Cell Environ, vol.27, pp.917-928, 2004.

V. Jaulneau, C. Lafitte, C. Jacquet, S. Fournier, and S. Salamagne, Ulvan, a sulfated polysaccharide from green algae, activates plant immunity through the jasmonic acid signaling pathway, J Biomed Biotechnol, p.525291, 2010.

R. Menard, S. Alban, P. De-ruffray, F. Jamois, and G. Franz, Beta-1,3 glucan sulfate, but not beta-1,3 glucan, induces the salicylic acid signaling pathway in tobacco and Arabidopsis, Plant Cell, vol.16, pp.3020-3032, 2004.

M. Lahaye and A. Robic, Structure and Functional Properties of Ulvan, a Polysaccharide from Green Seaweeds, Biomacromolecules, vol.8, pp.1765-1774, 2007.
URL : https://hal.archives-ouvertes.fr/hal-02669063

M. Tadege, J. Wen, J. He, H. Tu, and Y. Kwak, Large-scale insertional mutagenesis using the Tnt1 retrotransposon in the model legume Medicago truncatula, Plant J, vol.54, pp.335-347, 2008.

R. Paulert, D. Ebbinghaus, C. Urlass, and B. M. Moerschbacher, Priming of the oxidative burst in rice and wheat cell cultures by ulvan, a polysaccharide from green macroalgae, and enhanced resistance against powdery mildew in wheat and barley plants, Plant Pathology, vol.59, pp.634-642, 2010.

C. Zipfel, Pattern-recognition receptors in plant innate immunity, Curr Opin Immunol, vol.20, pp.10-16, 2008.

J. D. Jones and J. L. Dangl, The plant immune system, Nature, vol.444, pp.323-329, 2006.

G. Felix, J. D. Duran, S. Volko, and T. Boller, Plants have a sensitive perception system for the most conserved domain of bacterial flagellin, Plant J, vol.18, pp.265-276, 1999.

S. D. Rupwate and R. Rajasekharan, Plant phosphoinositide-specific phospholipase C: an insight, Plant Signal Behav, vol.7, pp.1281-1283, 2012.

D. W. Heinz, L. O. Essen, and R. L. Williams, Structural and mechanistic comparison of prokaryotic and eukaryotic phosphoinositide-specific phospholipases C, J Mol Biol, vol.275, pp.635-650, 1998.

S. A. Gellatly, S. Kalujnaia, and G. Cramb, Cloning, tissue distribution and subcellular localisation of phospholipase C X-domain containing protein (PLCXD) isoforms, Biochem Biophys Res Commun, vol.424, pp.651-656, 2012.

D. Bulgarelli, M. Rott, K. Schlaeppi, E. Ver-loren-van-themaat, and N. Ahmadinejad, Revealing structure and assembly cues for Arabidopsis root-inhabiting bacterial microbiota, Nature, vol.488, pp.91-95, 2012.

D. S. Lundberg, S. L. Lebeis, S. H. Paredes, S. Yourstone, and J. Gehring, Defining the core Arabidopsis thaliana root microbiome, Nature, vol.488, pp.86-90, 2012.