H. Kadokura, F. Katzen, and J. Beckwith, Protein disulfide bond formation in prokaryotes, Ann rev Biochem, vol.72, pp.111-146, 2003.

J. Lu and A. Holmgren, The thioredoxin antioxidant system, Free Rad Biol Med, vol.66, pp.75-87, 2014.

P. J. Kiley and H. Beinert, The role of Fe-S proteins in sensing and regulation in bacteria, Cur opin Microbiol, vol.6, issue.2, pp.181-186, 2003.

C. Andreini, I. Bertini, and G. Cavallaro, Minimal functional sites allow a classification of zinc sites in proteins, PloSONE, vol.6, issue.10, p.26325, 2011.

M. Zheng, F. Aslund, and G. Storz, Activation of the OxyR transcription factor by reversible disulfide bond formation, Science, vol.279, issue.5357, pp.1718-1739, 1998.

S. Soonsanga, J. W. Lee, and J. D. Helmann, Oxidant-dependent switching between reversible and sacrificial oxidation pathways for Bacillus subtilis OhrR, Mol Microbiol, vol.68, issue.4, pp.978-86, 2008.

K. Vido, H. Diemer, A. Van-dorsselaer, E. Leize, V. Juillard et al., Roles of thioredoxin reductase during the aerobic life of Lactococcus lactis, J Bacteriol, vol.187, issue.2, pp.601-611, 2005.

M. Ilbert, J. Horst, S. Ahrens, J. Winter, P. C. Graf et al., The redox-switch domain of Hsp33 functions as dual stress sensor, Nat Struct Mol Biol, vol.14, issue.6, pp.556-63, 2007.

Y. Ishii, S. Sonezaki, Y. Iwasaki, E. Tauchi, Y. Shingu et al., Single-step purification and characterization of MBP (maltose binding protein)-DnaJ fusion protein and its utilization for structure-function analysis, J Biochem, vol.124, issue.4, pp.842-849, 1998.

R. Daniels, P. Mellroth, A. Bernsel, F. Neiers, S. Normark et al., Disulfide bond formation and cysteine exclusion in gram-positive bacteria, J Biol Chem, vol.285, issue.5, pp.3300-3309, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00679428

R. J. Dutton, D. Boyd, M. Berkmen, and J. Beckwith, Bacterial species exhibit diversity in their mechanisms and capacity for protein disulfide bond formation, Proc Natl Acad Sci, vol.105, issue.33, pp.11933-11941, 2008.

T. R. Kouwen, A. Van-der-goot, R. Dorenbos, T. Winter, H. Antelmann et al., Thiol-disulphide oxidoreductase modules in the low-GC Grampositive bacteria, Mol Microbiol, vol.64, issue.4, pp.984-99, 2007.

N. Chim, C. A. Harmston, D. J. Guzman, and C. W. Goulding, Structural and biochemical characterization of the essential DsbA-like disulfide bond forming protein from Mycobacterium tuberculosis, BMC struct Biol, vol.13, p.23, 2013.

X. Wang, R. J. Dutton, J. Beckwith, and D. Boyd, Membrane topology and mutational analysis of Mycobacterium tuberculosis VKOR, a protein involved in disulfide bond formation and a homologue of human vitamin K epoxide reductase, Antioxid Redox Signal, vol.14, issue.8, pp.1413-1433, 2011.

L. Davey, C. K. Ng, S. A. Halperin, and S. F. Lee, Functional analysis of paralogous thioldisulfide oxidoreductases in Streptococcus gordonii, J Biol Chem, vol.288, issue.23, pp.16416-16445, 2013.

L. G. Bermudez-humaran, P. Langella, N. G. Cortes-perez, A. Gruss, R. S. Tamez-guerra et al., Intranasal immunization with recombinant Lactococcus lactis secreting murine interleukin-12 enhances antigen-specific Th1 cytokine production, Infect Imm, vol.71, issue.4, pp.1887-96, 2003.

T. Rochat, S. Boudebbouze, J. J. Gratadoux, S. Blugeon, P. Gaudu et al., Proteomic analysis of spontaneous mutants of Lactococcus lactis: Involvement of GAPDH and arginine deiminase pathway in H2O2 resistance, Proteomics, vol.12, issue.11, pp.1792-805, 2012.
URL : https://hal.archives-ouvertes.fr/hal-01004182

E. Torrents, G. Buist, A. Liu, R. Eliasson, J. Kok et al., The anaerobic (class III) ribonucleotide reductase from Lactococcus lactis. Catalytic properties and allosteric regulation of the pure enzyme system, J Biol Chem, vol.275, issue.4, pp.2463-71, 2000.

J. Tamarit, C. Gerez, C. Meier, E. Mulliez, A. Trautwein et al., The activating component of the anaerobic ribonucleotide reductase from Escherichia coli. An iron-sulfur center with only three cysteines, J Biol Chem, vol.275, issue.21, pp.15669-75, 2000.

F. S. Nielsen, P. S. Andersen, and K. F. Jensen, The B form of dihydroorotate dehydrogenase from Lactococcus lactis consists of two different subunits, encoded by the pyrDb and pyrK genes, and contains FMN, FAD, and [FeS] redox centers, J Biol Chem, vol.271, issue.46, pp.29359-65, 1996.

S. Tachon, J. B. Brandsma, and M. Yvon, NoxE NADH oxidase and the electron transport chain are responsible for the ability of Lactococcus lactis to decrease the redox potential of milk, Appl Environ Microbiol, vol.76, issue.5, pp.1311-1320, 2010.

P. Efler, M. Kilstrup, S. Johnsen, B. Svensson, and P. M. Hagglund, Two Lactococcus lactis thioredoxin paralogues play different roles in responses to arsenate and oxidative stress, Microbiology, vol.161, pp.528-566, 2015.

H. Ingmer, F. K. Vogensen, K. Hammer, and M. Kilstrup, Disruption and analysis of the clpB, clpC, and clpE genes in Lactococcus lactis: ClpE, a new Clp family in gram-positive bacteria, J Bacteriol, vol.181, issue.7, pp.2075-83, 1999.

A. K. Elsholz, K. Hempel, D. C. Pother, D. Becher, M. Hecker et al., CtsR inactivation during thiol-specific stress in low GC, Gram + bacteria, Mol Microbiol, vol.79, issue.3, pp.772-85, 2011.

B. Cesselin, D. Ali, J. J. Gratadoux, P. Gaudu, P. Duwat et al., Inactivation of the Lactococcus lactis high-affinity phosphate transporter confers oxygen and thiol resistance and alters metal homeostasis, Microbiology, vol.155, pp.2274-81, 2009.

J. Aranda, P. Cortes, M. E. Garrido, N. Fittipaldi, M. Llagostera et al., Contribution of the FeoB transporter to Streptococcus suis virulence, Int Microbiol, vol.12, issue.2, pp.137-180, 2009.

D. Magnani, O. Barre, S. D. Gerber, and M. Solioz, Characterization of the CopR regulon of Lactococcus lactis IL1403, J Bacteriol, vol.190, issue.2, pp.536-581, 2008.

H. Naikare, K. Palyada, R. Panciera, D. Marlow, and A. Stintzi, Major role for FeoB in Campylobacter jejuni ferrous iron acquisition, gut colonization, and intracellular survival, Infect Immun, vol.74, issue.10, pp.5433-5477, 2006.

P. Duwat, S. Sourice, B. Cesselin, G. Lamberet, K. Vido et al., Respiration capacity of the fermenting bacterium Lactococcus lactis and its positive effects on growth and survival, J Bacteriol, vol.183, issue.15, pp.4509-4525, 2001.

M. B. Pedersen, C. Garrigues, K. Tuphile, C. Brun, K. Vido et al., Impact of aeration and heme-activated respiration on Lactococcus lactis gene expression: identification of a heme-responsive operon, J Bacteriol, vol.190, issue.14, pp.4903-4914, 2008.

K. A. Aly, E. T. Beebe, C. H. Chan, M. A. Goren, C. Sepulveda et al., Cellfree production of integral membrane aspartic acid proteases reveals zincdependent methyltransferase activity of the Pseudomonas aeruginosa prepilin peptidase, PilD. MicrobiologyOpen, vol.2, issue.1, pp.94-104, 2013.

M. S. Strom, P. Bergman, and S. Lory, Identification of active-site cysteines in the conserved domain of PilD, the bifunctional type IV pilin leader peptidase/Nmethyltransferase of Pseudomonas aeruginosa, J Biol Chem, vol.268, issue.21, pp.15788-94, 1993.

C. Poyart and P. Trieu-cuot, A broad-host-range mobilizable shuttle vector for the construction of transcriptional fusions to beta-galactosidase in grampositive bacteria, FEMS microbiol lett, vol.156, issue.2, pp.193-201, 1997.

D. Drew, D. Sjostrand, J. Nilsson, T. Urbig, C. N. Chin et al., Rapid topology mapping of Escherichia coli inner-membrane proteins by prediction and PhoA/GFP fusion analysis, Proc Natl Acad Sci, vol.99, issue.5, pp.2690-2695, 2002.

K. Linke, T. Wolfram, J. Bussemer, and J. U. , The roles of the two zinc binding sites in DnaJ, J Biol Chem, vol.278, issue.45, pp.44457-66, 2003.

V. Nicolaes, E. Hajjaji, H. Davis, R. M. Van-der-henst, C. Depuydt et al., Insights into the function of YciM, a heat shock membrane protein required to maintain envelope integrity in Escherichia coli, J Bacteriol, vol.196, issue.2, pp.300-309, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01054365

S. Vitale, C. Fauquant, D. Lascoux, K. Schauer, C. Saint-pierre et al., ) structural zinc site in the Helicobacter pylori ferric uptake regulator, Biochemistry, vol.48, issue.4, pp.5582-91, 2009.

P. W. Riddles, R. L. Blakeley, and B. Zerner, Ellman's reagent: 5,5'-dithiobis(2-nitrobenzoic acid) -a reexamination, Anal Biochem, vol.94, pp.75-81, 1979.

L. M. Asad, D. C. Medeiros, I. Felzenszwalb, A. C. Leitao, and N. R. Asad, Participation of stress-inducible systems and enzymes involved in BER and NER in the protection of Escherichia coli against cumene hydroperoxide, Mut Research, vol.461, issue.1, pp.31-40, 2000.

D. O. Gostick, H. G. Griffin, C. A. Shearman, C. Scott, J. Green et al., Two operons that encode FNR-like proteins in Lactococcus lactis, Mol Microbiol, vol.31, issue.5, pp.1523-1558, 1999.

C. E. Outten and T. V. O'halloran, Femtomolar sensitivity of metalloregulatory proteins controlling zinc homeostasis, Science, vol.292, issue.5526, pp.2488-92, 2001.

N. Mccallum, A. K. Brassinga, C. D. Sifri, and B. Berger-bachi, Functional characterization of TcaA: minimal requirement for teicoplanin susceptibility and role in Caenorhabditis elegans virulence, Antimicrob Agents Chemother, vol.51, issue.11, pp.3836-3879, 2007.

P. Veiga, C. Bulbarela-sampieri, S. Furlan, A. Maisons, M. P. Chapot-chartier et al., SpxB regulates O-acetylation-dependent resistance of Lactococcus lactis peptidoglycan to hydrolysis, J Biol Chem, vol.282, issue.27, pp.19342-54, 2007.

P. Lechat, L. Hummel, S. Rousseau, and I. Moszer, GenoList: an integrated environment for comparative analysis of microbial genomes, Nuc Acids Res, vol.36, pp.469-474, 2008.

A. Krogh, B. Larsson, G. Von-heijne, and E. L. Sonnhammer, Predicting transmembrane protein topology with a hidden Markov model: application to complete genomes, J Mol Biol, vol.305, issue.3, pp.567-80, 2001.

J. Sambrook and D. W. Russell, Molecular cloning: a laboratory manual, 2001.

I. Biswas, A. Gruss, S. D. Ehrlich, and E. Maguin, High-efficiency gene inactivation and replacement system for gram-positive bacteria, J Bacteriol, vol.175, issue.11, pp.3628-3663, 1993.

W. J. Dower, J. F. Miller, and C. W. Ragsdale, High efficiency transformation of Escherichia coli by high voltage electroporation, Nuc Acids Res, vol.16, issue.13, pp.6127-6172, 1988.

H. Holo and I. F. Nes, High-Frequency Transformation, by Electroporation, of Lactococcus lactis subsp. cremoris Grown with Glycine in Osmotically Stabilized Media, Appl Environ Microbiol, vol.55, issue.12, pp.3119-3142, 1989.

H. Israelsen, S. M. Madsen, A. Vrang, E. B. Hansen, and E. Johansen, Cloning and partial characterization of regulated promoters from Lactococcus lactis Tn917-lacZ integrants with the new promoter probe vector, pAK80, Appl Environ Microbiol, vol.61, issue.7, pp.2540-2547, 1995.

D. Lechardeur, A. Fernandez, B. Robert, P. Gaudu, P. Trieu-cuot et al., The 2-Cys peroxiredoxin alkyl hydroperoxide reductase c binds heme and participates in its intracellular availability in Streptococcus agalactiae, J Biol Chem, vol.285, issue.21, pp.16032-16073, 2010.
URL : https://hal.archives-ouvertes.fr/hal-01604990