. Apolipoproteins, ATP Synthase Peripheral Stalk Subunit D, vol.5, issue.1

, ATP5J: ATP Synthase Peripheral Stalk Subunit F6; C1QA, C1QB and C1QC: Complement C1q chains, Complement C3a Receptor, vol.3, issue.1

, CB1R: Cannabinoid Receptor 1; CD14: CD14 Molecule; CPS1: Carbamoyl-Phosphate Synthase 1; CPT2: Carnitine Palmitoyltransferase 2

, CTH: Cystathionine Gamma-Lyase; CYP51A1: Cytochrome P450 Family 51

A. Subfamily and . Member,

, DBI (alias ACBP): Diazepam Binding Inhibitor (alias Acyl-CoA Binding Protein

, DEG: Differentially Expressed Genes, vol.24, p.24

, ELOVL2 and ELOVL5: Elongation Of Very Long Chain Fatty Acids Protein

, ENO2: Enolase 2; EXOSC5: Exosome Component 5; FABP7: Fatty Acid Binding Protein 7; FADS1 and FADS2: Fatty Acid Desaturases; FDFT1: Farnesyl-Diphosphate Farnesyltransferase 1; FDR: False Discovery Rate

, FPKM: Fragment Per Kilobase Million; GABA: gamma-Aminobutyric acid

, GOT1: Glutamic-Oxaloacetic Transaminase 1; HIF1: hypoxia-inducible factor-1

;. Kegg:-kyoto-encyclopedia-of-genes, ;. Genomes, and . Le:-low-energy, Malic Enzyme 1; MRPL: Mitochondrial Ribosomal Protein L; MRPS: Mitochondrial Ribosomal Protein S; MT-CO1 to MT-CO3: Mitochondrially Encoded Cytochrome C Oxidases; MT-CYB: Mitochondrially Encoded Cytochrome B; MT-ND1 to MT-ND6: Mitochondrially Encoded NADH:Ubiquinone Oxidoreductase Core Subunits; NAE: N-acyl ethanolamine; NAPE: N-arachidonoyl phosphatidylethanolamine; NAPE-PLD: N-Acyl Phosphatidylethanolamine Phospholipase D; NR1H3 (alias LXR?): Nuclear Receptor Subfamily 1 Group H Member 3 (alias Liver X Nuclear Receptor alpha); NSDHL: NAD(P) Dependent Steroid Dehydrogenase-Like, IRF1: Interferon Regulatory Factor 1, vol.1

, PAN2 and PAN3: Poly(A) Specific Ribonuclease Subunit PANs

, PE: Phosphatidylethanolamine; PEA: Palmitoylethanolamide

, PFKP: Phosphofructokinase, Platelet, vol.5

, RFI: Residual Feed Intake; RPL: Ribosomal Protein L; RPS: Ribosomal Protein S

, Sterol Carrier Protein 2; SDHD: Succinate Dehydrogenase Complex Subunit D; SKIV2L: Ski2 Like RNA Helicase, RQCD1: CCR4-NOT Transcription Complex Subunit 9, vol.2

. Sqle:-squalene-epoxidase,

, TLR4: Toll Like Receptor 4; TMM: Trimmed Mean of M-values

, TOB2: Transducer Of ERBB2, 2; TPI1: Triosephosphate Isomerase 1

, WGCNA: Weighted Gene Co-expression Network Analysis; WHSC1L1 (alias NSD3), Nuclear Receptor Binding SET Domain Protein, vol.3

S. Grobas, J. Mendez, D. Blas, C. Mateos, and G. , Laying hen productivity as affected by energy, supplemental fat, and linoleic acid concentration of the diet, Poult Sci, vol.78, pp.1542-51, 1999.

R. H. Harms, G. B. Russell, and D. R. Sloan, Performance of four strains of commercial layers with major changes in dietary energy, J Appl Poult Res, vol.9, pp.535-576, 2000.

G. R. Murugesan and M. E. Persia, Validation of the effects of small differences in dietary metabolizable energy and feed restriction in first-cycle laying hens, Poult Sci, vol.92, pp.1238-1281, 2013.

A. Bordas, M. Tixier-boichard, and P. Merat, Direct and correlated responses to divergent selection for residual food intake in Rhode island red laying hens, Br Poult Sci, vol.33, pp.741-54, 1992.

C. Desert, E. Baéza, M. Aite, M. Boutin, L. Cam et al., Multi-tissue transcriptomic study reveals the main role of liver in the chicken adaptive response to a switch in dietary energy source through the transcriptional regulation of lipogenesis, BMC Genomics, vol.19, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01727161

S. Kim, T. Tang, M. Abbott, J. A. Viscarra, Y. Wang et al., AMPK phosphorylates Desnutrin/ATGL and hormone-sensitive lipase to regulate lipolysis and fatty acid oxidation within adipose tissue, Mol Cell Biol, vol.36, pp.1961-76, 2016.

C. Désert, M. J. Duclos, P. Blavy, F. Lecerf, F. Moreews et al., Transcriptome profiling of the feeding-to-fasting transition in chicken liver, BMC Genomics, vol.9, p.611, 2008.

J. Bouvier-muller, C. Allain, G. Tabouret, F. Enjalbert, D. Portes et al., Whole blood transcriptome analysis reveals potential competition in metabolic pathways between negative energy balance and response to inflammatory challenge, Sci Rep, vol.7, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01607548

A. R. Tall, P. Costet, and N. Wang, Regulation and mechanisms of macrophage cholesterol efflux, J Clin Invest, vol.110, p.7, 2002.

T. B. Rajavashisth, P. A. Dawson, D. L. William, J. E. Shackelford, H. Lebherz et al., Structure, evolution, and regulation of chicken apolipoprotein A-I, J Biol Chem, vol.262, pp.7058-7065, 1987.

A. Freire-regatillo, P. Argente-arizón, J. Argente, L. M. García-segura, J. Chowen et al., Role of ATP-binding cassette transporters in brain lipid transport and neurological disease, Front Endocrinol, vol.8, pp.1145-66, 2008.

I. Björkhem and S. Meaney, Brain cholesterol: long secret life behind a barrier, Arterioscler Thromb Vasc Biol, vol.24, pp.806-821, 2004.

J. M. Dietschy and S. D. Turley, Thematic review series: brain lipids. Cholesterol metabolism in the central nervous system during early development and in the mature animal, J Lipid Res, vol.45, pp.1375-97, 2004.

S. Pinto, A. G. Roseberry, L. Hongyan, S. Diano, M. Shanabrough et al., Rapid rewiring of Arcuate nucleus feeding circuits by Leptin, Science, vol.304, pp.110-115, 2004.

D. Nuzzaci, A. Laderrière, A. Lemoine, E. Nédélec, L. Pénicaud et al., Plasticity of the Melanocortin system: determinants and possible consequences on food intake, Front Endocrinol, vol.6, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01220062

F. Buttgereit and M. D. Brand, A hierarchy of ATP-consuming processes in mammalian cells, Biochem J, vol.312, pp.163-170, 1995.

R. W. Mitchell and G. M. Hatch, Fatty acid transport into the brain: of fatty acid fables and lipid tails, Prostaglandins. Prostaglandins Leukot Essent Fat Acids, vol.85, pp.293-302, 2011.

R. W. Mitchell, N. H. On, D. Bigio, M. R. Miller, D. W. Hatch et al., Fatty acid transport protein expression in human brain and potential role in fatty acid transport across human brain microvessel endothelial cells: fatty acid transport protein expression in human brain, J Neurochem, vol.117, pp.735-781, 2011.

J. Cedernaes, W. Huang, K. M. Ramsey, N. Waldeck, L. Cheng et al., Transcriptional Basis for Rhythmic Control of Hunger and Metabolism within the AgRP Neuron, Cell Metabolism, vol.29, pp.1078-1091, 2019.

M. O. Dietrich and T. L. Horvath, Hypothalamic control of energy balance: insights into the role of synaptic plasticity, Trends Neurosci, vol.36, pp.65-73, 2013.

D. Marzo, V. Matias, and I. , Endocannabinoid control of food intake and energy balance, Nat Neurosci, vol.8, pp.585-594, 2005.

F. J. Bermudez-silva, M. P. Viveros, and J. M. Mcpartland, Rodriguez de Fonseca F. the endocannabinoid system, eating behavior and energy homeostasis: the end or a new beginning?, Pharmacol Biochem Behav, vol.95, pp.375-82, 2010.

N. Murataeva, A. Straiker, and K. Mackie, Parsing the players: 2-arachidonoylglycerol synthesis and degradation in the CNS: 2-AG synthesis and degradation in the CNS, Br J Pharmacol, vol.171, pp.1379-91, 2014.

C. Ezzili, K. Otrubova, and D. L. Boger, Fatty acid amide signaling molecules, Bioorg Med Chem Lett, vol.20, pp.5959-68, 2010.

K. J. Bowen, P. M. Kris-etherton, G. C. Shearer, S. G. West, L. Reddivari et al., Oleic acid-derived oleoylethanolamide: a nutritional science perspective, Prog Lipid Res, vol.67, pp.1-15, 2017.

H. Guillou, D. Zadravec, P. Martin, and A. Jacobsson, The key roles of elongases and desaturases in mammalian fatty acid metabolism: insights from transgenic mice, Prog Lipid Res, vol.49, pp.186-99, 2010.

R. J. De-antueno, L. C. Knickle, H. Smith, M. L. Elliot, S. J. Allen et al., Activity of human ?5 and ?6 desaturases on multiple n-3 and n-6 polyunsaturated fatty acids, FEBS Lett, vol.509, pp.77-80, 2001.

W. A. Devane and J. Axelrod, Enzymatic synthesis of anandamide, an endogenous ligand for the cannabinoid receptor, by brain membranes, Proc Natl Acad Sci, vol.91, pp.6698-701, 1994.

N. Jamshidi and D. A. Taylor, Anandamide administration into the ventromedial hypothalamus stimulates appetite in rats, Br J Pharmacol, vol.134, pp.1151-1155, 2001.

S. Ducheix, A. Montagner, V. Theodorou, L. Ferrier, and H. Guillou, The liver X receptor: a master regulator of the gut-liver axis and a target for non alcoholic fatty liver disease, Biochem Pharmacol, vol.86, pp.96-105, 2013.

H. Harizi, J. Corcuff, and N. Gualde, Arachidonic-acid-derived eicosanoids: roles in biology and immunopathology, Trends Mol Med, vol.14, pp.461-470, 2008.

K. Ohinata and M. Yoshikawa, Central prostaglandins in food intake regulation, Nutrition, vol.24, pp.798-801, 2008.

U. Kishore and K. Reid, C1q: structure, function, and receptors, Immunopharmacology, vol.49, pp.159-70, 2000.

M. Noris and G. Remuzzi, Overview of complement activation and regulation, Semin Nephrol, vol.33, pp.479-92, 2013.

A. P. Sjöberg, L. A. Trouw, and A. M. Blom, Complement activation and inhibition: a delicate balance, Trends Immunol, vol.30, pp.83-90, 2009.

K. Ohinata, K. Suetsugu, Y. Fujiwara, and M. Yoshikawa, Suppression of food intake by a complement C3a agonist, Peptides, vol.28, pp.602-608, 2007.

K. Ohinata, K. Takagi, K. Biyajima, K. Kaneko, C. Miyamoto et al., Complement C5a stimulates food intake via a prostaglandin D2-and neuropeptide Y-dependent mechanism in mice, Prostaglandins Other Lipid Mediat, vol.90, pp.81-85, 2009.

M. S. Byerly, P. S. Petersen, S. Ramamurthy, M. M. Seldin, X. Lei et al., C1q/TNF-related protein 4 (CTRP4) is a unique secreted protein with two tandem C1q domains that functions in the hypothalamus to modulate food intake and body weight, J Biol Chem, vol.289, pp.4055-69, 2014.

T. M. Loftus, Reduced food intake and body weight in mice treated with fatty acid synthase inhibitors, Science, vol.288, pp.2379-81, 2000.

S. Obici, Z. Feng, A. Arduini, R. Conti, and L. Rossetti, Inhibition of hypothalamic carnitine palmitoyltransferase-1 decreases food intake and glucose production, Nat Med, vol.9, pp.756-61, 2003.

Y. Minokoshi, T. Alquier, N. Furukawa, Y. Kim, A. Lee et al., AMP-kinase regulates food intake by responding to hormonal and nutrient signals in the hypothalamus, Nature, vol.428, pp.569-74, 2004.

M. López, L. Varela, M. J. Vázquez, S. Rodríguez-cuenca, C. R. González et al., Hypothalamic AMPK and fatty acid metabolism mediate thyroid regulation of energy balance, Nat Med, vol.16, pp.1001-1009, 2010.

T. C. Byerly, J. W. Kessler, R. M. Gous, and O. P. Thomas, Feed requirements for egg production, Poult Sci, vol.59, pp.2500-2507, 1980.

A. Bordas and P. Merat, Genetic variation and phenotypic correlations of food consumption of laying hens corrected for body weight and production, Br Poult Sci, vol.22, pp.25-33, 1981.

. R-core-team, R: A language and environment for statistical computing. Vienna: R Foundation for Statistical Computing, 2017.

J. Fox and S. Weisberg, An R companion to applied regression. Second. Thousand Oaks: Sage, 2011.

Y. Chiari and N. Galtier, RNA extraction from sauropsids blood: evaluation and improvement of methods, Amphibia-Reptilia, vol.32, pp.136-145, 2011.

A. Dobin, C. A. Davis, F. Schlesinger, J. Drenkow, C. Zaleski et al., STAR: ultrafast universal RNA-seq aligner, Bioinformatics, vol.29, pp.15-21, 2013.

H. Li, B. Handsaker, A. Wysoker, T. Fennell, J. Ruan et al., The sequence alignment/map format and SAMtools, Bioinformatics, vol.25, pp.2078-2087, 2009.

B. Li and C. N. Dewey, RSEM: accurate transcript quantification from RNA-Seq data with or without a reference genome, BMC bioinformatics, vol.12, p.323, 2011.

M. D. Robinson and A. Oshlack, A scaling normalization method for differential expression analysis of RNA-seq data, Genome Biol, vol.11, p.25, 2010.

M. D. Robinson, D. J. Mccarthy, and G. K. Smyth, edgeR: a bioconductor package for differential expression analysis of digital gene expression data, Bioinformatics, vol.26, pp.139-179, 2010.

X. Zhou, H. Lindsay, and M. D. Robinson, Robustly detecting differential expression in RNA sequencing data using observation weights, Nucleic Acids Res, vol.42, p.91, 2014.

Y. Benjamini and Y. Hochberg, Controlling the false discovery rate: a practical and powerful approach to multiple testing, J R Stat Soc Ser B Methodol, vol.57, pp.289-300, 1995.

D. Szklarczyk, A. Franceschini, S. Wyder, K. Forslund, D. Heller et al., STRING v10: protein-protein interaction networks, integrated over the tree of life, Nucleic Acids Res, vol.43, pp.447-52, 2015.

P. Langfelder and S. Horvath, WGCNA: an R package for weighted correlation network analysis, BMC Bioinformatics, vol.9, p.559, 2008.

, Publisher's Note

, Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations