A. P. Magiorakos, A. Srinivasan, R. B. Carey, Y. Carmeli, M. E. Falagas et al., , p.577

S. Harbarth, J. F. Hindler, G. Kahlmeter, B. Olsson-liljequist, D. L. Paterson et al., , p.578

J. Stelling, M. J. Struelens, A. Vatopoulos, J. T. Weber, D. L. Monnet et al., Multidrug-579 resistant, extensively drug-resistant and pandrug-resistant bacteria: an 580 international expert proposal for interim standard definitions for acquired 581 resistance, Clinical Microbiology and Infection, vol.18, pp.268-281, 2012.

. Awj and K. E. Holt, Gastrointestinal Carriage Is a Major Reservoir of Klebsiella 585 pneumoniae Infection in Intensive Care Patients, Clinical Infectious Diseases, vol.586, pp.208-215, 2017.

M. J. Satlin, K. D. Chavda, T. M. Baker, L. Chen, E. Shashkina et al., , p.589

T. J. Walsh and B. N. Kreiswirth, Colonization With Levofloxacin-resistant, 2018.

, Extended-spectrum ?-Lactamase-producing Enterobacteriaceae and Risk of 591

, Bacteremia in Hematopoietic Stem Cell Transplant Recipients. Clinical Infectious 592 on December 12, 2019 at INRA -Institut National de la Recherche Agronomique

A. Djukovic, E. M. González-barberá, J. Sanz, . Artacho, . Peñaranda et al., High heterogeneity of multidrug, vol.67, pp.1720-1728, 2020.
URL : https://hal.archives-ouvertes.fr/hal-02465857

C. J. Donskey, T. K. Chowdhry, M. T. Hecker, C. K. Hoyen, J. A. Hanrahan et al., , p.594

R. A. Hutton-thomas, C. C. Whalen, R. A. Bonomo, and L. B. Rice, Effect of antibiotic 595 therapy on the density of vancomycin-resistant enterococci in the stool of colonized 596 patients, N Engl J Med, vol.343, pp.1925-1932, 2000.

J. H. Han, W. B. Bilker, I. Nachamkin, P. Tolomeo, X. Mao et al.,

E. , Impact of antibiotic use during hospitalization on the development of 599 gastrointestinal colonization with Escherichia coli with reduced fluoroquinolone 600 susceptibility, Infect Control Hosp Epidemiol, vol.34, pp.1070-1076, 2013.

F. Bert, B. Larroque, F. Dondero, F. Durand, C. Paugam-burtz et al., , p.602

M. H. Nicolas-chanoine, Risk factors associated with preoperative fecal 603 carriage of extended-spectrum ?-lactamase-producing Enterobacteriaceae in liver 604 transplant recipients, Transpl Infect Dis, vol.16, pp.84-89, 2013.

P. Torres-gonzalez, M. E. Cervera-hernandez, M. D. Niembro-ortega, and F. Leal-vega, , p.606

L. P. Cruz-hervert, L. García-garcía, A. Galindo-fraga, and A. Martinez-gamboa, , p.607

M. Bobadilla-del-valle, J. Sifuentes-osornio, and A. Ponce-de-leon, Factors 608 Associated to Prevalence and Incidence of Carbapenem-Resistant, 2015.

, Enterobacteriaceae Fecal Carriage: A Cohort Study in a Mexican Tertiary Care 610 Hospital, PLoS ONE, vol.10, p.139883

M. Arnan, C. Gudiol, L. Calatayud, J. Liñares, M. A. Domínguez et al., , p.612

J. Carratalà and F. Gudiol, Risk factors for, and clinical relevance of, faecal 613 extended-spectrum ?-lactamase producing Escherichia coli (ESBL-EC) carriage in 614 neutropenic patients with haematological malignancies, Eur J Clin Microbiol Infect, vol.615, pp.355-360, 2010.

J. Rodríguez-baño, L. Lopez-cerero, M. D. Navarro, P. D. De-alba, and A. Pascual, , 2008.

, Faecal carriage of extended-spectrum beta-lactamase-producing Escherichia coli: 618 prevalence, risk factors and molecular epidemiology, Journal of Antimicrobial, vol.619, pp.1142-1149

E. Titelman, C. M. Hasan, A. Iversen, P. Nauclér, M. Kais et al., , 2014.

, Faecal carriage of extended-spectrum b-lactamase-producing Enterobacteriaceae is 622 common 12 months after infection and is related to strain factors, Clinical 623 Microbiology and Infection, vol.20, pp.508-515

P. Woerther, J. Micol, C. Angebault, F. Pasquier, and S. Pilorge, , p.625

S. Botton, B. Gachot, and E. Chachaty, Monitoring antibiotic-resistant 626 enterobacteria faecal levels is helpful in predicting antibiotic susceptibility of 627 bacteraemia isolates in patients with haematological malignancies, Journal of 628 Medical Microbiology, vol.64, pp.676-681, 2015.

Y. Taur, J. B. Xavier, L. Lipuma, C. Ubeda, J. Goldberg et al., , vol.631, 2012.

, Allogeneic Hematopoietic Stem Cell Transplantation, Clinical Infectious Diseases, vol.633, pp.905-914

T. Shimasaki, A. Seekatz, C. Bassis, Y. Rhee, R. D. Yelin et al., Cisneros 638 carbapenemase-producing Klebsiella pneumoniae within the gut microbiota is 639 associated with risk of bloodstream infection in long-term acute care hospital 640 patients, Clinical Infectious Diseases, vol.68, pp.2053-2059

R. Datta, R. Platt, D. S. Yokoe, and S. S. Huang, Environmental cleaning intervention 642 and risk of acquiring multidrug-resistant organisms from prior room occupants, Archives of internal medicine, vol.643, pp.491-494, 2011.

A. Bhalla, N. J. Pultz, A. J. Ray, C. K. Hoyen, E. C. Eckstein et al., , 2003.

, Antianaerobic Antibiotic Therapy Promotes Overgrowth of Antibiotic-Resistant, vol.646

, Gram-Negative Bacilli and Vancomycin-Resistant Enterococci in the Stool of 647

, Colonized Patients. Infect Control Hosp Epidemiol, vol.24, pp.644-649

S. Caballero, S. Kim, R. A. Carter, I. M. Leiner, B. Su?ac et al., , p.649

E. G. Pamer, Cooperating Commensals Restore Colonization Resistance to 650, 2017.

, Vancomycin-Resistant Enterococcus faecium, Cell Host and Microbe, vol.21, p.592

C. Ubeda, V. Bucci, S. Caballero, A. Djukovic, N. C. Toussaint et al., , p.653

L. Ling, A. Gobourne, D. No, Y. Taur, R. R. Jenq et al., , p.654

E. G. Pamer, Intestinal Microbiota Containing Barnesiella Species Cures 655, 2013.

, Vancomycin-Resistant Enterococcus faecium Colonization, Infection and Immunity, vol.656, pp.965-973

G. Karachalios and K. Charalabopoulos, Biliary Excretion of Antimicrobial 658 Drugs, Chemotherapy, vol.48, pp.280-297, 2003.

A. P. Wilson, A. N. Schuetz, S. Reyes, and P. D. Tamma, Clinical pharmacokinetics of teicoplanin, Clin Pharmacokinet, vol.660, p.662, 2000.

, Tazobactam Should Be Used To Treat Infections with Extended-Spectrum-Beta

, LactamasePositive Organisms, J Clin Microbiol, vol.56, p.2173

P. Harris, P. A. Tambyah, D. C. Lye, Y. Mo, T. H. Lee et al., , p.665

M. Falcone, M. Bassetti, E. Righi, B. A. Rogers, S. Kanj et al., , p.667

P. Ingram, N. Daneman, P. Griffin, E. Athan, P. Lorenc et al., for the MERINO Trial Investigators 669 and the Australasian Society for Infectious Disease Clinical Research Network 670 (ASID-CRN), pp.30-671, 2018.

, Mortality for Patients With E colior Klebsiella pneumoniaeBloodstream Infection 672 and Ceftriaxone Resistance, JAMA, vol.320, p.22

C. K. Hoyen, N. J. Pultz, D. L. Paterson, D. C. Aron, and C. J. Donskey, Effect of parenteral 674 antibiotic administration on establishment of intestinal colonization in mice by 675, 2003.

, Klebsiella pneumoniae strains producing extended-spectrum beta-lactamases

C. E. Nord, B. Brismar, B. Kasholm-tengve, and G. Tunevall, Effect of 678 piperacillin/tazobactam therapy on intestinal microflora, Antimicrobial Agents and Chemotherapy, vol.47, p.209, 1992.

, at INRA -Institut National de la Recherche Agronomique, 2019.

A. Djukovic, E. M. González-barberá, J. Sanz, . Artacho, . Peñaranda et al., High heterogeneity of multidrug, 2020.
URL : https://hal.archives-ouvertes.fr/hal-02465857

S. Isaac, J. U. Scher, A. Djukovic, N. Jiménez, D. R. Littman et al., , p.681

C. Ubeda, Short-and long-term effects of oral vancomycin on the human 682 intestinal microbiota, Journal of Antimicrobial Chemotherapy, vol.72, p.25, 2017.

C. E. Nord, L. Kager, A. Philipson, and G. Stiernstedt, Impact of imipenem/cilastatin 684 therapy on faecal flora, Eur J Clin Microbiol, vol.3, pp.475-477, 1984.

H. Sakata, K. Fujita, and H. Yoshioka, The effect of antimicrobial agents on fecal 686 flora of children, Antimicrobial Agents and Chemotherapy, vol.29, pp.225-229, 1986.

I. Brook, H. M. Wexler, and E. Goldstein, Antianaerobic Antimicrobials: Spectrum 688 and Susceptibility Testing, Clin Microbiol Rev, vol.26, p.28, 2013.

D. Greenwood, Microbiological properties of teicoplanin, J Antimicrob 690 Chemother, vol.21, 1988.

J. Behra-miellet, L. Calvet, and L. Dubreuil, Colistin: the revival of polymyxins for the 694 management of multidrug-resistant gram-negative bacterial infections, International Journal of Antimicrobial Agents, vol.22, pp.1333-1341, 2003.

N. J. Pultz, U. Stiefel, and C. J. Donskey, Effects of daptomycin, linezolid, and 697 vancomycin on establishment of intestinal colonization with vancomycin-resistant 698 enterococci and extended-spectrum-beta-lactamase-producing Klebsiella 699 pneumoniae in mice, Antimicrobial Agents and Chemotherapy, vol.49, pp.3513-3516, 2005.

, Figure 1. MRE positive samples show diverse compositions and antibiotic resistance 703 patterns of detected MRE isolates. MRE could be detected in 221 samples collected from 704 80 of the analyzed patients. (A) The most frequently isolated MRE belonged to the species 705

E. Coli, Other detected MRE in order of prevalence were Citrobacter freundii, p.706

K. Klebsiella-pneumoniae and . Oxytoca, Enterobacter cloacae, Morganella morganii, p.707

R. S. Citrobacter-amalonaticus and E. Hermanii, Enterobacter 709 aerogenes and Escherichia fergusonii were detected in only one sample. (B) In 45 of the 710 221 MRE positive samples (20.4%), MRE belonging to more than one bacterial species 711 could be identified, and in 70 of the MRE positive samples (31.7%), MRE strains belonging 712 to the same species but with different antibiotic resistance pattern were identified, p.713

, at INRA -Institut National de la Recherche Agronomique, 2019.

A. Djukovic, E. M. González-barberá, J. Sanz, . Artacho, . Peñaranda et al., High heterogeneity of multidrug, 2020.
URL : https://hal.archives-ouvertes.fr/hal-02465857

, When two 714 isolates from the same sample have exactly the same resistance pattern and taxonomy, 715 only one of the two isolates is shown. Columns and rows are grouped based on MRE 716 taxonomy and antibiotics' class. S: susceptible; I: intermediate resistant phenotype

, A) MRE levels identified in all colonized fecal samples included in the study 721 (N=221 samples) or the mean (obtained from log10 CFU data) of the MRE levels identified 722 in colonized samples from each patient (N=80 patients). Whiskers represent minimum and 723 maximum values. Horizontal lines represent the median and 25-75 percentiles. (B) MRE 724 levels in fecal samples colonized exclusively with the indicated species (low abundant 725 species: N?5, are not included). No significant (ns) differences in MRE levels were 726 detected between different species (Kruskal-Wallis test)

, 13 (K. oxytoca); 65 (E. coli) and 31 (K. pneumoniae) samples. (C) Changes in MRE 728 levels among 135 pairs of consecutive fecal samples (see Methods for definition) collected 729 from 59 patients. The grey bar represents the median of MRE levels, cloacae, p.730

, Number of the total pairs of consecutive samples included in the 731 study (all) and number of pairs of samples in which an increase in MRE levels (> 1 log2 fold 732 change -FC; N=39) or a decrease in MRE levels

, A) MRE log2FC among pairs of consecutive 736 samples between which a therapy with an antibiotic with activity against anaerobic 737 bacteria was initiated (+), as compared to pairs of samples in which no antianaerobic 738 antibiotics were administered (-). N=38 pairs of samples from 21 patients and 21 pairs of 739 samples from 18 patients for the antianaero (-) and (+) groups respectively. *p<0.05; Two-740 on, Figure 3. Antibiotic therapies including the beta-lactams piperacillin-tazobactam 735 and meropenem decrease MRE fecal levels, 2019.

A. Djukovic, E. M. González-barberá, J. Sanz, . Artacho, . Peñaranda et al., High heterogeneity of multidrug-resistant Enterobacteriaceae fecal levels in hospitalized patients is partially driven by intravenous, p.27, 2020.
URL : https://hal.archives-ouvertes.fr/hal-02465857

, Bars represents the mean, whiskers represent the SEM. (B) Antibiotics with 741 antianaerobic activity that were administered between each pair of samples shown in (A)

, Colors in (A) indicate the taxonomy of the MRE identified in each pair of samples. Detailed 743 taxonomy and antibiotic resistant pattern of all the MREs identified within each pair of 744 samples is shown in Supplementary Table 10

, Impact of IV beta-lactams (piperacillin-tazobactam and meropenem) on

, piperacillin-tazobactam or 748 meropenem) was administered (+) or not (-). MRE strains detected in the consecutive 749 pairs of samples analyzed were either susceptible (S), or non-susceptible (R/I) towards 750 the administered beta-lactam. (B, C) Same as in (A) but only including pairs of samples in 751 which the beta-lactam therapy, MRE fecal levels depends on the MRE resistance profile. (A) MRE log2FC among pairs 747 of consecutive samples between which a beta-lactam (i.e

. **p&lt;0, The results show that beta-754 lactams (i.e. meropenem and piperacillin-tazobactam) reduce the levels of MRE strains 755 susceptible to the beta-lactam administered. Colors indicate the taxonomy of the MRE 756 identified in each pair of samples. Detailed taxonomy and antibiotic resistant pattern of all 757 the MREs identified within each pair of samples is shown in Supplementary Table 11. The 758 number of pairs of samples (S) and patients (P) included in each group are: no beta-lactam 759 (S=46, P=27); susceptible to beta-lactams (S=16, P=15); non-susceptible to beta-lactams 760 (S=14, P=9), 01; two-tailed t-753 test compared with the group not receiving beta-lactams

, Meropenem and piperacillin-tazobactam decrease fecal levels of 763 susceptible MRE but occasionally resistant strains emerge. MRE levels and sensitivity 764 pattern to the beta-lactam received before and during therapy with meropenem (A) or 765 piperacillin-tazobactam (PTZ) (B), Sensitivity to the antibiotic is indicated 767 on December 12, 2019 at INRA -Institut National de la Recherche Agronomique

A. Djukovic, E. M. González-barberá, J. Sanz, . Artacho, . Peñaranda et al., High heterogeneity of multidrug, 2020.
URL : https://hal.archives-ouvertes.fr/hal-02465857