T. L. Miller, M. J. Wolin, Z. Hongxue, and M. P. Bryant, Characteristics of methanogens isolated from bovine rumen, Appl Environ Microbiol, vol.51, pp.201-202, 1986.

B. Dridi, M. L. Fardeau, B. Ollivier, D. Raoult, and M. Drancourt, Methanomassiliicoccus luminyensis gen. nov., sp. nov., a methanogenic archaeon isolated from human faeces, Int J Syst Evol Microbiol, vol.62, p.22859731, 2012.

K. Paul, J. O. Nonoh, L. Mikulski, and A. Brune, Methanoplasmatales," thermoplasmatales-related archaea in termite guts and other environments, are the seventh order of methanogens, Appl Environ Microbiol, vol.78, p.23001661, 2012.

B. Dridi, D. Raoult, and M. Drancourt, Archaea as emerging organisms in complex human microbiomes, Anaerobe, vol.17, pp.56-63, 2011.

C. A. Carberry, S. M. Waters, D. A. Kenny, and C. J. Creevey, Rumen methanogenic genotypes differ in abundance according to host residual feed intake phenotype and diet type, Appl Env Microbiol, vol.80, pp.586-594, 2014.

G. Borrel, A. Mccann, J. Deane, M. C. Neto, D. B. Lynch et al., Genomics and metagenomics of trimethylamine-utilizing Archaea in the human gut microbiome, ISME J, vol.11, pp.2059-2074, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01658467

C. Bang, K. Weidenbach, T. Gutsmann, H. Heine, and R. A. Schmitz, The intestinal archaea Methanosphaera stadtmanae and Methanobrevibacter smithii activate human dendritic cells, PLoS One, vol.9, 2014.

S. B. Ghavami, E. Rostami, A. A. Sephay, S. Shahrokh, H. Balaii et al., Alterations of the human gut Methanobrevibacter smithii as a biomarker for inflammatory bowel diseases, Microb Pathog, vol.117, pp.285-289, 2018.

R. Mathur and G. M. Barlow, Expert Review of Gastroenterology and Hepatology, pp.1087-1099, 2015.

S. E. Hook, A. Wright, and B. W. Mcbride, Methanogens: methane producers of the rumen and mitigation strategies, Archaea, vol.945785, 2010.

M. Poulsen, C. Schwab, B. B. Jensen, R. M. Engberg, A. Spang et al., Methylotrophic methanogenic Thermoplasmata implicated in reduced methane emissions from bovine rumen, Nat Commun, vol.4, 1428.

G. N. Jarvis, C. Strö-mpl, D. M. Burgess, L. C. Skillman, E. Moore et al., Isolation and identification of ruminal methanogens from grazing cattle, Curr Microbiol, vol.40, pp.327-332, 2000.

N. Friedman, J. E. Mizrahi, and I. , Compositional and functional dynamics of the bovine rumen methanogenic community across different developmental stages, Environ Microbiol, vol.19, pp.3365-3373, 2017.

E. E. Hansen, C. A. Lozupone, F. E. Rey, M. Wu, J. L. Guruge et al., Pan-genome of the dominant human gut-associated archaeon, Methanobrevibacter smithii, studied in twins, Proc Natl Acad Sci, vol.108, pp.4599-4606, 2011.

R. K. Thauer, A. K. Kaster, H. Seedorf, W. Buckel, and R. Hedderich, Methanogenic archaea: Ecologically relevant differences in energy conservation, Nat Rev Microbiol, vol.6, pp.579-591, 2008.

D. P. Morgavi, E. Forano, C. Martin, and C. J. Newbold, Microbial ecosystem and methanogenesis in ruminants, Animal, vol.4, pp.1024-1036, 2010.

B. E. Jackson and M. J. Mcinerney, Anaerobic microbial metabolism can proceed close to thermodynamic limits, Nature, vol.415, pp.454-456, 2002.

R. Gonzalez-cabaleiro, J. M. Lema, J. Rodriguez, and R. Kleerebezem, Linking thermodynamics and kinetics to assess pathway reversibility in anaerobic bioprocesses, Energy Environ Sci, vol.6, pp.3780-3789, 2013.

R. Muñoz-tamayo, B. Laroche, E. Walter, J. Doré, and M. Leclerc, Mathematical modelling of carbohydrate degradation by human colonic microbiota, J Theor Biol, vol.266, pp.189-201, 2010.

A. S. Van-wey, S. J. Lovatt, N. C. Roy, and P. R. Shorten, Determination of potential metabolic pathways of human intestinal bacteria by modeling growth kinetics from cross-feeding dynamics, Food Res Int, vol.88, pp.207-216, 2016.

S. Shoaie, P. Ghaffari, P. Kovatcheva-datchary, A. Mardinoglu, P. Sen et al., Quantifying Diet-Induced Metabolic Changes of the Human Gut Microbiome, Cell Metab, vol.22, pp.320-331, 2015.

H. Kettle, P. Louis, G. Holtrop, S. H. Duncan, and H. J. Flint, Modelling the emergent dynamics and major metabolites of the human colonic microbiota, Environ Microbiol, vol.17, pp.1615-1630, 2015.

J. J. Heijnen and J. P. Dijken, In search of a thermodynamic description of biomass yields for the chemotrophic growth of microorgansims, Biotechnol Bioengeneering, vol.39, pp.833-852, 1992.

R. Kleerebezem and M. Van-loosdrecht, A Generalized Method for Thermodynamic State Analysis of Environmental Systems, Crit Rev Environ Sci Technol, vol.40, pp.1-54, 2010.

C. Y. Hoh and R. Cord-ruwisch, A practical kinetic model that considers endproduct inhibition in anaerobic digestion processes by including the equilibrium constant, Biotechnol Bioeng, vol.51, pp.597-604, 1996.

D. Quemener, E. Bouchez, and T. , A thermodynamic theory of microbial growth, Isme J, vol.8, pp.1747-1751, 2014.
URL : https://hal.archives-ouvertes.fr/hal-00825781

T. Großkopf and O. S. Soyer, Microbial diversity arising from thermodynamic constraints, ISME J, vol.10, pp.2725-2733, 2016.

. Kohn-r-a and R. C. Boston, The Role of Thermodynamics in Controlling Rumen Metabolism, Model Nutr Util Farm Anim, pp.11-24, 2000.

E. M. Ungerfeld, A theoretical comparison between two ruminal electron sinks, Front Microbiol, vol.4, 2013.

P. H. Janssen, Influence of hydrogen on rumen methane formation and fermentation balances through microbial growth kinetics and fermentation thermodynamics, Anim Feed Sci Technol, vol.160, pp.1-22, 2010.

H. J. Van-lingen, C. M. Plugge, J. G. Fadel, E. Kebreab, A. Bannink et al., Thermodynamic driving force of hydrogen on rumen microbial metabolism: A theoretical investigation, PLoS One, vol.11, 2016.

A. Offner and D. Sauvant, Thermodynamic modeling of ruminal fermentations, vol.55, pp.343-365, 2006.
URL : https://hal.archives-ouvertes.fr/hal-00890060

S. Ghimire, P. Gregorini, and M. D. Hanigan, Evaluation of predictions of volatile fatty acid production rates by the Molly cow model, J Dairy Sci, vol.97, p.24268399, 2014.

R. S. Wolfe, Techniques for cultivating methanogens, Methods Enzymol, vol.494, p.21402207, 2011.

S. Ohene-adjei, R. M. Teather, M. Ivan, and R. J. Forster, Postinoculation protozoan establishment and association patterns of methanogenic archaea in the ovine rumen, Appl Environ Microbiol, vol.73, pp.4609-4618, 2007.

M. Popova, C. Martin, M. Eugene, M. M. Mialon, M. Doreau et al., Effect of fibre-and starch-rich finishing diets on methanogenic Archaea diversity and activity in the rumen of feedlot bulls, Anim Feed Sci Technol, pp.113-121, 2011.
URL : https://hal.archives-ouvertes.fr/hal-02454712

G. Bricheux, J. L. Bonnet, J. Bohatier, J. P. Morel, and N. Morel-desrosiers, Microcalorimetry: a powerful and original tool for tracking the toxicity of a xenobiotic on Tetrahymena pyriformis, Ecotoxicol Env Saf, vol.98, pp.88-94, 2013.
URL : https://hal.archives-ouvertes.fr/hal-01053791

O. Braissant, G. Bonkat, D. Wirz, and A. Bachmann, Microbial growth and isothermal microcalorimetry: Growth models and their application to microcalorimetric data, Thermochim Acta, vol.555, pp.64-71, 2013.

R. Muñoz-tamayo, S. Giger-reverdin, and D. Sauvant, Mechanistic modelling of in vitro fermentation and methane production by rumen microbiota, Anim Feed Sci Technol, vol.220, pp.1-21, 2016.

D. J. Batstone, J. Keller, I. Angelidaki, S. Kalyuzhnyi, S. G. Pavlostathis et al., Anaerobic Digestion Model No.1 (ADM1). IWA Task Group for Mathematical Modelling of Anaerobic Digestion Processes, 2002.

S. G. Pavlostathis, T. L. Miller, and M. J. Wolin, Cellulose Fermentation by Continuous Cultures of Ruminococcus-Albus and Methanobrevibacter-Smithii, Appl Microbiol Biotechnol, vol.33, pp.109-116, 1990.

N. L. Schauer and J. G. Ferry, Metabolism of formate in Methanobacterium formicicum, J Bacteriol, vol.142, pp.800-807, 1980.

A. K. Haydock, I. Porat, W. B. Whitman, and J. A. Leigh, Continuous culture of Methanococcus maripaludis under defined nutrient conditions, FEMS Microbiol Lett, 2004.

E. Walter and L. Pronzato, Identification of Parametric Models from Experimental Data, 1997.

R. Muñoz-tamayo, L. Puillet, J. B. Daniel, D. Sauvant, O. Martin et al., Review: To be or not to be an identifiable model. Is this a relevant question in animal science modelling? Animal, vol.12, pp.701-712, 2018.

G. Bellu, M. P. Saccomani, S. Audoly, L. D'angio, and . Daisy, A new software tool to test global identifiability of biological and physiological systems, Comput Methods Programs Biomed, vol.88, pp.52-61, 2007.

P. A. Vanrolleghem, M. Vandaele, and D. Dochain, Practical identifiability of a biokinetic model of activatedsludge respiration, Water Res, vol.29, pp.2561-2570, 1995.

R. Muñoz-tamayo, B. Laroche, M. Leclerc, and E. Walter, IDEAS: A parameter identification toolbox with symbolic analysis of uncertainty and its application to biological modelling. IFAC Proceedings Volumes, pp.1271-1276, 2009.

L. I. Lin, A concordance correlation-coefficient to evaluate reproducibility, Biometrics, vol.45, pp.255-268, 1989.

N. A. Schill, J. S. Liu, V. Stockar, and U. , Thermodynamic analysis of growth of Methanobacterium thermoautotrophicum, Biotechnol Bioeng, vol.64, pp.74-81, 1999.

J. S. Liu, I. W. Marison, V. Stockar, and U. , Microbial growth by a net heat up-take: A calorimetric and thermodynamic study on acetotrophic methanogenesis by Methanosarcina barkeri, Biotechnol Bioeng, vol.75, pp.170-180, 2001.

T. Ruiz, A. Bec, M. Danger, A. Koussoroplis, J. Aguer et al., A microcalorimetric approach for investigating stoichiometric constraints on the standard metabolic rate of a small invertebrate, Ecol Lett, vol.21, pp.1714-1722, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01913839

P. H. Janssen and M. Kirs, Structure of the archaeal community of the rumen, Appl Environ Microbiol, vol.74, pp.3619-3625, 2008.

U. Von-stockar, C. Larsson, and I. W. Marison, Calorimetry and energetic efficiencies in aerobic and anaerobic microbial growth, Pure Appl Chem, vol.65, pp.1889-1892, 1993.

V. Stockar, U. Liu, and J. S. , Does microbial life always feed on negative entropy? Thermodynamic analysis of microbial growth, Biochim Biophys Acta-Bioenerg, vol.1412, pp.191-211, 1999.

G. Hardin, The competitive exclusion principle. Science (80-), vol.131, pp.1292-1297, 1960.

T. A. Lynch, Y. Wang, B. Van-brunt, D. Pacheco, and P. H. Janssen, Modelling thermodynamic feedback on the metabolism of hydrogenotrophic methanogens, J Theor Biol, vol.477, pp.14-23, 2019.

P. Udén, T. R. Rounsaville, G. R. Wiggans, and P. J. Van-soest, The measurement of liquid and solid digesta retention in ruminants, equines and rabbits given timothy (Phleum pratense) hay, Br J Nutr, vol.48, pp.329-339, 1982.

F. Ng, S. Kittelmann, M. L. Patchett, G. T. Attwood, P. H. Janssen et al., An adhesin from hydrogen-utilizing rumen methanogen Methanobrevibacter ruminantium M1 binds a broad range of hydrogen-producing microorganisms, Env Microbiol, vol.18, pp.3010-3021, 2016.

B. S. Samuel, E. E. Hansen, J. K. Manchester, P. M. Coutinho, B. Henrissat et al., Genomic and metabolic adaptations of Methanobrevibacter smithii to the human gut, Proc Natl Acad Sci, vol.104, pp.10643-10648, 2007.

W. J. Kelly, S. C. Leahy, D. Li, R. Perry, S. C. Lambie et al., The complete genome sequence of the rumen methanogen Methanobacterium formicicum BRM9, Stand Genomic Sci, vol.9, p.25780506, 2014.

G. E. Hutchinson, The paradox of the plankton, Am Nat, vol.95, pp.137-145, 1961.

A. Bernalier, M. Lelait, V. Rochet, J. P. Grivet, G. R. Gibson et al., Acetogenesis from H2 and CO2 by methane-and non-methane-producing human colonic bacterial communities, FEMS Microbiol Ecol, vol.19, pp.193-202, 1996.

G. M. Nava, F. Carbonero, J. A. Croix, E. Greenberg, and H. R. Gaskins, Abundance and diversity of mucosaassociated hydrogenotrophic microbes in the healthy human colon, ISME J, vol.6, pp.57-70, 2012.

H. J. Flint, S. H. Duncan, and K. P. Scott, Interactions and competition within the microbial community of the human colon : links between diet and health, Environ Microbiol, vol.9, p.17472627, 2007.

S. A. Huws, C. J. Creevey, L. B. Oyama, I. Mizrahi, S. E. Denman et al., Addressing global ruminant agricultural challenges through understanding the rumen microbiome: past, present, and future, Front Microbiol, vol.9, p.2161, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01890696

T. Pfeiffer, S. Schuster, and S. Bonhoeffer, Cooperation and competition in the evolution of ATP-producing Pathways. Science (80-), vol.292, pp.50-507, 2001.

J. Vandermeer, M. A. Evans, P. Foster, T. Hö-Ö-k, M. Reiskind et al., Increased competition may promote species coexistence, Proc Natl Acad Sci, vol.99, pp.8731-8736, 2002.

R. C. Maclean and I. Gudelj, Resource competition and social conflict in experimental populations of yeast, Nature, vol.441, pp.498-501, 2006.

A. Rapaport, D. Dochain, and J. Harmand, Long run coexistence in the chemostat with multiple species, J Theor Biol, vol.257, pp.252-259, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00554535

F. Grognard, P. Masci, E. Benoît, and O. Bernard, Competition between phytoplankton and bacteria: exclusion and coexistence, J Math Biol, vol.70, p.24748458, 2015.
URL : https://hal.archives-ouvertes.fr/hal-00968182

S. B. Hsu, S. Hubbell, and P. Waltman, A mathematical theory for single-nutrient competition in continuous cultures of micro-organisms, SIAM J Appl Math, vol.32, pp.366-383, 1977.

S. Widder, R. J. Allen, T. Pfeiffer, T. P. Curtis, C. Wiuf et al., Challenges in microbial ecology: Building predictive understanding of community function and dynamics, ISME J, vol.10, pp.2557-2568, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01512087

R. Muñoz-tamayo, R. Agudelo, J. F. Dewhurst, R. J. Miller, G. Vernon et al., A parsimonious software sensor for estimating the individual dynamic pattern of methane emissions from cattle, Animal, vol.13, pp.1180-1187, 2019.

J. Z. Ou, C. K. Yao, A. Rotbart, J. G. Muir, P. R. Gibson et al., Human intestinal gas measurement systems: In vitro fermentation and gas capsules, Trends Biotechnol, vol.33, pp.208-213, 2015.