D. O. Adams, Y. , and S. F. , Ethylene biosynthesis: identification of 1-aminocyclopropane-1-carboxylic acid as an intermediate in the conversion of methionine to ethylene, Proc. Natl. Acad. Sci. USA, vol.76, pp.170-174, 1979.

R. Aloni, The induction of vascular tissues by auxin and cytokinin, Plant hormones: Physiology, biochemistry and molecular biology, pp.531-546, 1995.

R. Aloni, A. Wolf, P. Feigenbaum, A. Avni, K. et al., The never ripe mutant provides evidence that tumor-induced ethylene controls the morphogenesis of Agrobacterium tumefaciens-induced crown galls on tomato stems, Plant Physiol, vol.117, pp.841-849, 1998.

O. Y. Ampomah, A. Avetisyan, E. Hansen, J. Svenson, T. Huser et al., The thuEFGKAB operon of rhizobia and Agrobacterium tumefaciens codes for transport of trehalose, maltitol, and isomers of sucrose and their assimilation through the formation of their 3-keto derivatives, J. Bacteriol, vol.195, pp.3797-3807, 2013.

A. Anand, S. R. Uppalapati, C. Ryu, S. N. Allen, L. Kang et al., Salicylic acid and systemic acquired resistance play a role in attenuating crown gall disease caused by Agrobacterium tumefaciens, Plant Physiol, vol.146, pp.703-715, 2008.

M. Andberg, H. Maaheimo, H. Boer, M. Penttilä, A. Koivula et al., Characterization of a novel Agrobacterium tumefaciens galactarolactone cycloisomerase enzyme for direct conversion of D-galactarolactone to 3-deoxy-2-keto-L-threo-hexarate, J. Biol. Chem, vol.287, pp.17662-17671, 2012.

A. Aznar, N. W. Chen, M. Rigault, N. Riache, D. Joseph et al., Scavenging iron: a novel mechanism of plant immunity activation by microbial siderophores, Plant Physiol, vol.164, pp.2167-2183, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01204049

S. Baek and J. P. Shapleigh, Expression of nitrite and nitric oxide reductases in free-living and plant-associated Agrobacterium tumefaciens C58 sells, Appl. Environ. Microbiol, vol.71, pp.4427-4436, 2005.

I. S. Barton, C. Fuqua, and T. G. Platt, Ecological and evolutionary dynamics of a model facultative pathogen: Agrobacterium and crown gall disease of plants, Environ. Microbiol, vol.20, pp.16-29, 2018.

J. Baude, L. Vial, C. Villard, T. Campillo, C. Lavire et al., Coordinated regulation of species-specific hydroxycinnamic acid degradation and siderophore biosynthesis pathways in Agrobacterium fabrum, Appl. Environ. Microbiol, vol.82, pp.3515-3524, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01910930

C. J. Beauchamp, W. S. Chilton, P. Dion, A. , and H. , Fungal catabolism of crown gall opines, Appl. Environ. Microbiol, vol.56, pp.150-155, 1990.

C. Bélanger, M. L. Canfield, L. W. Moore, D. , and P. , Genetic analysis of nonpathogenic Agrobacterium tumefaciens mutants arising in crown gall tumors, J. Bacteriol, vol.177, pp.3752-3757, 1995.

C. R. Bell, N. E. Cummings, M. L. Canfield, and L. W. Moore, Competition of octopine-catabolizing Pseudomonas spp. and octopine-type Agrobacterium tumefaciens for octopine in chemostats, Appl. Environ. Microbiol, vol.56, pp.2840-2846, 1990.

D. Bellin, S. Asai, M. Delledonne, and H. Yoshioka, Nitric oxide as a mediator for defense responses, Mol. Plant-Microbe Interact, vol.26, pp.271-277, 2013.

R. L. Berendsen, M. C. Van-verk, I. A. Stringlis, C. Zamioudis, J. Tommassen et al., Unearthing the genomes of plant-beneficial Pseudomonas model strains WCS358, WCS374 and WCS417, BMC Genomics, vol.16, p.539, 2015.

H. Boer, H. Maaheimo, A. Koivula, M. Penttilä, R. et al., Identification in Agrobacterium tumefaciens of the D-galacturonic acid dehydrogenase gene, Appl. Microbiol. Biotechnol, vol.86, pp.901-909, 2010.

E. Boncompagni, M. Østerås, M. Poggi, and D. Le-rudulier, Occurrence of choline and glycine betaine uptake and metabolism in the family Rhizobiaceae and rheir roles in osmoprotection, Appl. Environ. Microbiol, vol.65, pp.2072-2077, 1999.

D. D. Bondage, J. Lin, L. Ma, C. Kuo, and E. Lai, VgrG C terminus confers the type VI effector transport specificity and is required for binding with PAAR and adaptor-effector complex, Proc. Natl. Acad. Sci. USA, vol.113, pp.3931-3940, 2016.

S. Bougouffa, A. Radovanovic, M. Essack, and V. B. Bajic, DEOP: a database on osmoprotectants and associated pathways, Database, p.100, 2014.

G. Brader, S. Compant, K. Vescio, B. Mitter, F. Trognitz et al., Ecology and genomic insights into plant-pathogenic and plantnonpathogenic endophytes, Annu. Rev. Phytopathol, vol.55, pp.61-83, 2017.

A. Brencic, A. Eberhard, and S. C. Winans, Signal quenching, detoxification and mineralization of vir gene-inducing phenolics by the VirH2 protein of Agrobacterium tumefaciens, Mol. Microbiol, vol.51, pp.1103-1115, 2004.

M. Bruto, C. Prigent-combaret, D. Muller, and Y. Moënne-loccoz, Analysis of genes contributing to plant-beneficial functions in plant growthpromoting rhizobacteria and related, Proteobacteria. Sci, 2014.
URL : https://hal.archives-ouvertes.fr/hal-02487456

T. Campillo, S. Renoud, I. Kerzaon, L. Vial, J. Baude et al., Analysis of hydroxycinnamic acid degradation in Agrobacterium fabrum reveals a coenzyme A-dependent, beta-oxidative deacetylation pathway, Appl. Environ. Microbiol, vol.80, pp.3341-3349, 2014.
URL : https://hal.archives-ouvertes.fr/hal-02001304

G. A. Cangelosi, G. Martinetti, and E. W. Nester, Osmosensitivity phenotypes of Agrobacterium tumefaciens mutants that lack periplasmic beta-1,2-glucan, J. Bacteriol, vol.172, pp.2172-2174, 1990.

A. Carlier, R. Chevrot, Y. Dessaux, and D. Faure, The assimilation of gamma-butyrolactone in Agrobacterium tumefaciens C58 interferes with the accumulation of the N-acyl-homoserine lactone signal, Mol. Plant-Microbe Interact, vol.17, pp.951-957, 2004.
URL : https://hal.archives-ouvertes.fr/hal-00122349

L. Costet, S. Cordelier, S. Dorey, F. Baillieul, B. Fritig et al., Relationship between localized acquired resistance (LAR) and the hypersensitive response (HR): HR is necessary for LAR to occur and salicylic acid is not sufficient to trigger LAR, Mol. Plant-Microbe Interact, vol.12, pp.655-662, 1999.

T. P. Cushnie and A. J. Lamb, Antimicrobial activity of flavonoids, Int. J. Antimicrob. Agents, vol.26, pp.343-356, 2005.

I. Dandapath, M. Chatterjee, D. Sarkar, A. Gupta, G. Rabbani et al., Bacterial osmolyte system and its physiological roles" in Cellular osmolytes: From chaperoning protein folding to clinical perspectives, pp.229-249, 2017.

D. M. De-costa, K. Suzuki, Y. , and K. , Structural and functional analysis of a putative gene cluster for palatinose transport on the linear chromosome of Agrobacterium tumefaciens MAFF301001, J. Bacteriol, vol.185, pp.2369-2373, 2003.

R. Deeken, J. C. Engelmann, M. Efetova, T. Czirjak, T. Müller et al., An integrated view of gene expression and solute profiles of Arabidopsis tumors: a genome-wide approach, Plant Cell, vol.18, pp.3617-3634, 2006.

M. Delledonne, Y. Xia, R. A. Dixon, and C. Lamb, Nitric oxide functions as a signal in plant disease resistance, Nature, vol.394, pp.585-588, 1998.

D. Valle, P. García-armesto, M. R. De-arriaga, D. González-donquiles, C. Rodríguez-fernández et al., Antimicrobial activity of kaempferol and resveratrol in binary combinations with parabens or propyl gallate against Enterococcus faecalis, Food Control, vol.61, pp.213-220, 2016.

Y. Dessaux and D. Faure, Niche construction and exploitation by Agrobacterium: how to survive and face competition in soil and plant habitats, Agrobacterium Biology: From Basic Science to Biotechnology Current Topics in Microbiology and Immunology, pp.55-86, 2018.
URL : https://hal.archives-ouvertes.fr/hal-02177606

Y. Dessaux, A. Petit, S. K. Farrand, and P. J. Murphy, Opines and opine-like molecules involved in plant-rhizobiaceae interactions" in The rhizobiaceae: Molecular biology of model plant-associated bacteria, pp.173-197, 1998.

A. Domínguez-ferreras, R. Pérez-arnedo, A. Becker, J. Olivares, M. J. Soto et al., Transcriptome profiling reveals the importance of plasmid pSymB for osmoadaptation of Sinorhizobium meliloti, J. Bacteriol, vol.188, pp.7617-7625, 2006.

M. Drummond, Crown gall disease, Nature, vol.281, pp.343-347, 1979.

A. Duprey, S. Reverchon, and W. Nasser, Bacterial virulence and Fis: adapting regulatory networks to the host environment, Trends Microbiol, vol.22, pp.92-99, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01997032

W. E. Durrant, D. , and X. , Systemic acquired resistance, Annu. Rev. Phytopathol, vol.42, pp.185-209, 2004.

M. Efetova, J. Zeier, M. Riederer, C. Lee, N. Stingl et al., A central role of abscisic acid in drought stress protection of Agrobacterium-induced tumors on Arabidopsis, Plant Physiol, vol.145, pp.853-862, 2007.

A. Engering, L. Hogerwerf, and J. Slingenbergh, Pathogenhost-environment interplay and disease emergence, Emerging Microbes Infect, vol.2, p.5, 2013.

H. Faist, A. Keller, U. Hentschel, and R. Deeken, Grapevine (Vitis vinifera) crown galls host distinct microbiota, Appl. Environ. Microbiol, vol.82, pp.5542-5552, 2016.

A. L. Flores-mireles, A. Eberhard, and S. C. Winans, Agrobacterium tumefaciens can obtain sulphur from an opine that is synthesized by octopine synthase using S-methylmethionine as a substrate, Mol. Microbiol, vol.84, pp.845-856, 2012.

S. B. Gelvin, Integration of Agrobacterium T-DNA into the plant genome, Annu. Rev. Genet, vol.51, pp.195-217, 2017.

J. Gohlke and R. Deeken, Plant responses to Agrobacterium tumefaciens and crown gall development, Front. Plant Sci, vol.5, p.155, 2014.

A. González-mula, J. Lachat, L. Mathias, D. Naquin, F. Lamouche et al., The biotroph Agrobacterium tumefaciens thrives in tumors by exploiting a wide spectrum of plant host metabolites, New Phytol, vol.222, pp.455-467, 2019.

A. González-mula, J. Lang, C. Grandclément, D. Naquin, M. Ahmar et al., Lifestyle of the biotroph Agrobacterium tumefaciens in the ecological niche constructed on its host plant, New Phytol, vol.219, pp.350-362, 2018.

B. Goodner, G. Hinkle, S. Gattung, N. Miller, M. Blanchard et al., Genome sequence of the plant pathogen and biotechnology agent Agrobacterium tumefaciens C58, Science, vol.294, pp.2323-2328, 2001.

J. E. Gordon, C. , and P. J. , The Agrobacterium Ti plasmids, Microbiol. Spectr, vol.2, 2014.

J. Gray, S. B. Gelvin, R. Meilan, and R. O. Morris, Transfer RNA is the source of extracellular isopentenyladenine in a Ti-plasmidless strain of Agrobacterium tumefaciens, Plant Physiol, vol.110, pp.431-438, 1996.

A. Gunina and Y. Kuzyakov, Sugars in soil and sweets for microorganisms: review of origin, content, composition and fate, Soil Biol. Biochem, vol.90, pp.87-100, 2015.

P. Guyon, M. D. Chilton, A. Petit, and J. Tempé, Agropine in "nulltype" crown gall tumors: evidence for generality of the opine concept, Proc. Natl. Acad. Sci. USA, vol.77, pp.2693-2697, 1980.

F. Harrison, J. Paul, R. C. Massey, and A. Buckling, Interspecific competition and siderophore-mediated cooperation in Pseudomonas aeruginosa, ISME J, vol.2, pp.49-55, 2008.

E. Haudecoeur, S. Planamente, A. Cirou, M. Tannières, B. J. Shelp et al., Proline antagonizes GABA-induced quenching of quorumsensing in Agrobacterium tumefaciens, Proc. Natl. Acad. Sci. USA, vol.106, pp.14587-14592, 2009.

E. Haudecoeur, M. Tannières, A. Cirou, A. Raffoux, Y. Dessaux et al., Different regulation and roles of lactonases AiiB and AttM in Agrobacterium tumefaciens C58, Mol. Plant-Microbe Interact, vol.22, pp.529-537, 2009.

B. C. Heckel, A. D. Tomlinson, E. R. Morton, J. Choi, and C. Fuqua, Agrobacterium tumefaciens exoR controls acid response genes and impacts exopolysaccharide synthesis, horizontal gene transfer, and virulence gene expression, J. Bacteriol, vol.196, pp.3221-3233, 2014.

M. E. Hibbing and C. Fuqua, Antiparallel and interlinked control of cellular iron levels by the Irr and RirA regulators of Agrobacterium tumefaciens, J. Bacteriol, vol.193, pp.3461-3472, 2011.

H. Hwang, S. B. Gelvin, and E. Lai, Editorial: Agrobacterium biology and its application to transgenic plant production, Front. Plant Sci, vol.6, p.265, 2015.

H. Hwang, M. Wang, Y. Lee, Y. Tsai, Y. Li et al., Agrobacterium-produced and exogenous cytokinin-modulated Agrobacterium-mediated plant transformation, Mol. Plant Pathol, vol.11, pp.677-690, 2010.

C. Ingram-smith and K. J. Miller, Effects of ionic and osmotic strength on the glucosyltransferase of Rhizobium meliloti responsible for cyclic ?-(1,2)-glucan biosynthesis, Appl. Environ. Microbiol, vol.64, pp.1290-1297, 1998.

P. Ji, W. , and M. , Assessment of the importance of similarity in carbon source utilization profiles between the biological control agent and the pathogen in biological control of bacterial speck of tomato, Appl. Environ. Microbiol, vol.68, pp.4383-4389, 2002.

M. J. Kampschreur, R. Kleerebezem, C. Picioreanu, L. Bakken, L. Bergaust et al., Metabolic modeling of denitrification in Agrobacterium tumefaciens: a tool to study inhibiting and activating compounds for the denitrification pathway, Front. Microbiol, vol.3, p.370, 2012.

B. Kempf and E. Bremer, Uptake and synthesis of compatible solutes as microbial stress responses to high-osmolality environments, Arch. Microbiol, vol.170, pp.319-330, 1998.

L. Kerpen, L. Niccolini, F. Licausi, J. T. Van-dongen, and D. A. Weits, Hypoxic conditions in crown galls induce plant anaerobic responses that support tumor proliferation, Front. Plant Sci, vol.10, p.56, 2019.

S. Khemthong, P. Nuonming, T. Dokpikul, R. Sukchawalit, and S. Mongkolsuk, Regulation and function of the flavonoid-inducible efflux system, emrR-emrAB, in Agrobacterium tumefaciens C58, Appl. Microbiol. Biotechnol, 2019.

J. Klinkenberg, H. Faist, S. Saupe, S. Lambertz, M. Krischke et al., Two fatty acid desaturases, STEAROYL-ACYL CARRIER PROTEIN ?9-DESATURASE6 and FATTY ACID DESATURASE3, are involved in drought and hypoxia stress signaling in Arabidopsis crown galls, Plant Physiol, vol.164, pp.570-583, 2014.

P. Krenek, O. Samajova, I. Luptovciak, A. Doskocilova, G. Komis et al., Transient plant transformation mediated by Agrobacterium tumefaciens: principles, methods and applications, Biotechnol. Adv, vol.33, pp.1024-1042, 2015.

B. Lacroix and V. Citovsky, The roles of bacterial and host plant factors in Agrobacterium-mediated genetic transformation, Int. J. Dev. Biol, vol.57, pp.467-481, 2013.

J. Lang, A. Vigouroux, S. Planamente, A. El-sahili, P. Blin et al., Agrobacterium uses a unique ligand-binding mode for trapping opines and acquiring a competitive advantage in the niche construction on plant host, PLoS Pathog, vol.10, p.1004444, 2014.

F. Lassalle, T. Campillo, L. Vial, J. Baude, D. Costechareyre et al., Genomic species are ecological species as revealed by comparative genomics in Agrobacterium tumefaciens, Genome Biol. Evol, vol.3, pp.762-781, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00698000

F. Lassalle, R. Planel, S. Penel, D. Chapulliot, V. Barbe et al., Ancestral genome estimation reveals the history of ecological diversification in Agrobacterium, Genome Biol. Evol, vol.9, pp.3413-3431, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01913841

C. Lee, M. Efetova, J. C. Engelmann, R. Kramell, C. Wasternack et al., Agrobacterium tumefaciens promotes tumor induction by modulating pathogen defense in Arabidopsis thaliana, Plant Cell, vol.21, pp.2948-2962, 2009.

J. Lee, Y. Kim, K. Baek, M. H. Cho, and J. Lee, The multifaceted roles of the interspecies signalling molecule indole in Agrobacterium tumefaciens, Environ. Microbiol, vol.17, pp.1234-1244, 2015.

M. Leitner, E. Vandelle, F. Gaupels, D. Bellin, and M. Delledonne, NO signals in the haze: nitric oxide signalling in plant defence, Curr. Opin. Plant Biol, vol.12, pp.451-458, 2009.

P. Lemanceau, D. Expert, F. Gaymard, P. A. Bakker, and J. Briat, Chapter 12 role of iron in plant-microbe interactions, Advances in botanical research advances in botanical research, pp.491-549, 2009.

S. Leonard, F. Hommais, W. Nasser, R. , and S. , Plantphytopathogen interactions: bacterial responses to environmental and plant stimuli, Environ. Microbiol, vol.19, pp.1689-1716, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01759780

J. Lin, L. Ma, and E. Lai, Systematic dissection of the Agrobacterium type VI secretion system reveals machinery and secreted components for subcomplex formation, PLoS One, vol.8, p.67647, 2013.

P. Liu and E. W. Nester, Indoleacetic acid, a product of transferred DNA, inhibits vir gene expression and growth of Agrobacterium tumefaciens C58, Proc. Natl. Acad. Sci. USA, vol.103, pp.4658-4662, 2006.

Z. Liu, Y. Xie, X. Zhang, X. Hu, Y. Li et al., Efficient construction of large genomic deletion in Agrobacterium tumefaciens by combination of Cre/loxP system and triple recombineering, Curr. Microbiol, vol.72, pp.465-472, 2016.

P. Llop, J. Murillo, B. Lastra, and M. M. López, Recovery of nonpathogenic mutant bacteria from tumors caused by several Agrobacterium tumefaciens strains: a frequent event?, Appl. Environ. Microbiol, vol.75, pp.6504-6514, 2009.

J. E. Loper and J. S. Buyer, Siderophores in microbial interactions on plant surfaces, Mol. Plant-Microbe Interact, vol.4, pp.5-13, 1991.

B. J. Lugtenberg, L. V. Kravchenko, and M. Simons, Tomato seed and root exudate sugars: composition, utilization by Pseudomonas biocontrol strains and role in rhizosphere colonization, Environ. Microbiol, vol.1, pp.439-446, 1999.

Z. Q. Luo, F. , and S. K. , Cloning and characterization of a tetracycline resistance determinant present in Agrobacterium tumefaciens C58, J. Bacteriol, vol.181, pp.618-626, 1999.

L. Ma, A. Hachani, J. Lin, A. Filloux, and E. Lai, Agrobacterium tumefaciens deploys a superfamily of type VI secretion DNase effectors as weapons for interbacterial competition in planta, Cell Host Microbe, vol.16, pp.94-104, 2014.

L. Marty, A. Vigouroux, M. Aumont-nicaise, Y. Dessaux, D. Faure et al., Structural basis for high specificity of amadori compound and mannopine opine binding in bacterial pathogens, J. Biol. Chem, vol.291, pp.22638-22649, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01440866

L. Marty, A. Vigouroux, M. Aumont-nicaise, F. Pelissier, T. Meyer et al., Structural basis for two efficient modes of agropinic acid opine import into the bacterial pathogen Agrobacterium tumefaciens, Biochem. J, vol.476, pp.165-178, 2019.
URL : https://hal.archives-ouvertes.fr/hal-02172945

S. L. Mathews, H. Hannah, H. Samagaio, C. Martin, E. Rodriguez-rassi et al., Glycoside hydrolase genes are required for virulence of Agrobacterium tumefaciens on Bryophyllum daigremontiana and tomato, Appl. Environ. Microbiol, vol.85, pp.603-622, 2019.

A. G. Matthysse, Exopolysaccharides of Agrobacterium tumefaciens, Agrobacterium biology: From basic science to biotechnology current topics in microbiology and immunology, pp.111-141, 2018.

R. R. Mccarthy, M. Yu, K. Eilers, Y. Wang, E. Lai et al., Cyclic di-GMP inactivates T6SS and T4SS activity in Agrobacterium tumefaciens, Mol. Microbiol, 2019.

M. Mcintosh, B. A. Stone, and V. A. Stanisich, Curdlan and other bacterial (1?3)-?-d-glucans, Appl. Microbiol. Biotechnol, vol.68, pp.163-173, 2005.

T. Meyer, S. Renoud, A. Vigouroux, A. Miomandre, V. Gaillard et al., Regulation of hydroxycinnamic acid degradation drives Agrobacterium fabrum lifestyles, Mol. Plant-Microbe Interact, vol.31, pp.814-822, 2018.
URL : https://hal.archives-ouvertes.fr/hal-02392428

T. Meyer, A. Vigouroux, M. Aumont-nicaise, G. Comte, L. Vial et al., The plant defense signal galactinol is specifically used as a nutrient by the bacterial pathogen Agrobacterium fabrum, J. Biol. Chem, vol.293, pp.7930-7941, 2018.
URL : https://hal.archives-ouvertes.fr/hal-02182313

M. Miethke and M. A. Marahiel, Siderophore-based iron acquisition and pathogen control. Microbiol, Mol. Biol. Rev, vol.71, pp.413-451, 2007.

L. W. Moore, W. S. Chilton, and M. L. Canfield, Diversity of opines and opine-catabolizing bacteria isolated from naturally occurring crown gall tumors, Appl. Environ. Microbiol, vol.63, pp.201-207, 1997.

K. Nakjarung, S. Mongkolsuk, and P. Vattanaviboon, The oxyR from Agrobacterium tumefaciens: evaluation of its role in the regulation of catalase and peroxide responses, Biochem. Biophys. Res. Commun, vol.304, pp.41-47, 2003.

C. S. Nautiyal, D. , and P. , Characterization of the opine-utilizing microflora associated with samples of soil and plants, Appl. Environ. Microbiol, vol.56, pp.2576-2579, 1990.

E. W. Nester, Agrobacterium: nature's genetic engineer, Front. Plant Sci, vol.5, p.730, 2014.

P. Ngok-ngam, N. Ruangkiattikul, A. Mahavihakanont, S. S. Virgem, R. Sukchawalit et al., Roles of Agrobacterium tumefaciens RirA in iron regulation, oxidative stress response, and virulence, J. Bacteriol, vol.191, pp.2083-2090, 2009.

R. Niehus, A. Picot, N. M. Oliveira, S. Mitri, and K. R. Foster, The evolution of siderophore production as a competitive trait, Evol. Int. J. Org. Evol, vol.71, pp.1443-1455, 2017.

S. Nobile and J. Deshusses, Transport of gamma-butyrobetaine in an Agrobacterium species isolated from soil, J. Bacteriol, vol.168, pp.780-784, 1986.

S. Nonaka and H. Ezura, Plant-Agrobacterium interaction mediated by ethylene and super-Agrobacterium conferring efficient gene transfer, Front. Plant Sci, vol.5, p.681, 2014.

S. Nonaka, T. Someya, S. Zhou, M. Takayama, K. Nakamura et al., An Agrobacterium tumefaciens strain with gamma-aminobutyric acid transaminase activity shows an enhanced genetic transformation ability in plants, Sci. Rep, vol.7, p.42649, 2017.

P. Nuonming, S. Khemthong, T. Dokpikul, R. Sukchawalit, and S. Mongkolsuk, Characterization and regulation of AcrABR, a RND-type multidrug efflux system, Agrobacterium tumefaciens C58, vol.214, pp.146-155, 2018.

T. J. Panikulangara, G. Eggers-schumacher, M. Wunderlich, H. Stransky, and F. Schöffl, Galactinol synthase1. A novel heat shock factor target gene responsible for heat-induced synthesis of raffinose family oligosaccharides in Arabidopsis, Plant Physiol, vol.136, pp.3148-3158, 2004.

A. Pitzschke, Agrobacterium infection and plant defense-transformation success hangs by a thread, Front. Plant Sci, vol.4, p.519, 2013.

T. G. Platt, J. D. Bever, and C. Fuqua, A cooperative virulence plasmid imposes a high fitness cost under conditions that induce pathogenesis, Proc. Biol. Sci, vol.279, pp.1691-1699, 2012.

T. G. Platt, C. Fuqua, and J. D. Bever, Resource and competitive dynamics shape the benefits of public goods cooperation in a plant pathogen, Evol. Int. J. Org. Evol, vol.66, pp.1953-1965, 2012.

T. G. Platt, E. R. Morton, I. S. Barton, J. D. Bever, and C. Fuqua, Ecological dynamics and complex interactions of Agrobacterium megaplasmids, Front. Plant Sci, vol.5, p.635, 2014.

Z. Qi, I. Hamza, and M. R. Brian, Heme is an effector molecule for iron-dependent degradation of the bacterial iron response regulator (Irr) protein, Proc. Natl. Acad. Sci. USA, vol.96, pp.13056-13061, 1999.

S. Reverchon and W. Nasser, Dickeya ecology, environment sensing and regulation of virulence programme, Environ. Microbiol. Rep, vol.5, pp.622-636, 2013.
URL : https://hal.archives-ouvertes.fr/hal-01997073

T. N. Romanuk, Y. Zhou, U. Brose, E. L. Berlow, R. J. Williams et al., Predicting invasion success in complex ecological networks, Philos. Trans. R. Soc. Lond. Ser. B Biol. Sci, vol.364, pp.1743-1754, 2009.

M. R. Rondon, K. S. Ballering, and M. G. Thomas, Identification and analysis of a siderophore biosynthetic gene cluster from Agrobacterium tumefaciens C58, Microbiology, vol.150, pp.3857-3866, 2004.

L. J. Rong, S. J. Karcher, and S. B. Gelvin, Genetic and molecular analyses of picA, a plant-inducible locus on the Agrobacterium tumefaciens chromosome, J. Bacteriol, vol.173, pp.5110-5120, 1991.

A. M. Ruffing, C. , and R. R. , Transcriptome profiling of a curdlanproducing Agrobacterium reveals conserved regulatory mechanisms of exopolysaccharide biosynthesis, Microb. Cell Factories, vol.11, p.17, 2012.

P. Saenkham, W. Eiamphungporn, S. K. Farrand, P. Vattanaviboon, and S. Mongkolsuk, Multiple superoxide dismutases in Agrobacterium tumefaciens: functional analysis, gene regulation, and influence on tumorigenesis, J. Bacteriol, vol.189, pp.8807-8817, 2007.

N. Sans, G. Schröder, and J. Schröder, The Noc region of Ti plasmid C58 codes for arginase and ornithine cyclodeaminase, Eur. J. Biochem, vol.167, pp.81-87, 1987.

U. Schurr, B. Schuberth, R. Aloni, K. S. Pradel, D. Schmundt et al., Structural and functional evidence for xylem-mediated water transport and high transpiration in Agrobacterium tumefaciens-induced tumors of Ricinus communis, Bot. Acta, vol.109, pp.405-411, 1996.

K. Schwalm, R. Aloni, M. Langhans, W. Heller, S. Stich et al., Flavonoid-related regulation of auxin accumulation in Agrobacterium tumefaciens-induced plant tumors, Planta, vol.218, pp.163-178, 2003.

M. Shams, T. Campillo, C. Lavire, D. Muller, X. Nesme et al., Rapid and efficient methods to isolate, type strains and determine species of Agrobacterium spp. in pure culture and complex environments, Biochem. Test, vol.3, issue.20, 2012.
URL : https://hal.archives-ouvertes.fr/hal-02566900

C. Shi, X. Zhang, Y. Sun, M. Yang, K. Song et al., Antimicrobial activity of ferulic acid against Cronobacter sakazakii and possible mechanism of action, Foodborne Pathog. Dis, vol.13, pp.196-204, 2016.

P. Shih, S. Chou, C. Müller, B. A. Halkier, R. Deeken et al., Differential roles of glucosinolates and camalexin at different stages of Agrobacterium-mediated transformation, Mol. Plant Pathol, vol.19, 1956.

S. Simoh, N. Quintana, H. K. Kim, Y. H. Choi, and R. Verpoorte, Metabolic changes in Agrobacterium tumefaciens-infected Brassica rapa, J. Plant Physiol, vol.166, pp.1005-1014, 2009.

R. Singh and G. Maclachlan, Transport and metabolism of sucrose versus hexoses in relation to growth in etiolated pea stem, Plant Physiol, vol.71, pp.531-535, 1983.

F. Skoog and C. O. Miller, Chemical regulation of growth and organ formation in plant tissues cultured in vitro, Symp. Soc. Exp. Biol, vol.11, pp.118-130, 1957.

E. V. Sokurenko, R. Gomulkiewicz, and D. E. Dykhuizen, Source-sink dynamics of virulence evolution, Nat. Rev. Microbiol, vol.4, pp.548-555, 2006.

T. Someya, S. Nonaka, K. Nakamura, and H. Ezura, Increased 1-aminocyclopropane-1-carboxylate deaminase activity enhances Agrobacterium tumefaciens-mediated gene delivery into plant cells, vol.2, pp.873-880, 2013.

P. D. Spanu and R. Panstruga, Editorial: Biotrophic Plant-Microbe Interactions, Front. Plant Sci, vol.8, p.192, 2017.

S. J. Stasinopoulos, P. R. Fisher, B. A. Stone, and V. A. Stanisich, Detection of two loci involved in (1?3)-?-glucan (curdlan) biosynthesis by Agrobacterium sp. ATCC31749, and comparative sequence analysis of the putative curdlan synthase gene, Glycobiology, vol.9, pp.31-41, 1999.

H. Taberman, M. Andberg, T. Parkkinen, J. Jänis, M. Penttilä et al., Structure and function of a decarboxylating Agrobacterium tumefaciens keto-deoxy-d-galactarate dehydratase, Biochemistry, vol.53, pp.8052-8060, 2014.

H. Taberman, M. Andberg, T. Parkkinen, P. Richard, N. Hakulinen et al., Purification, crystallization and preliminary X-ray diffraction analysis of a novel keto-deoxy-D-galactarate (KDG) dehydratase from Agrobacterium tumefaciens, Acta Crystallogr. Sect. F: Struct. Biol. Commun, vol.70, pp.49-52, 2014.

G. Tang, Q. Li, S. Xing, N. Li, Z. Tang et al., Agrobacterium tumefaciens ExoR represses succinoglycan biosynthesis and is required for biofilm formation and motility, Mol. Plant-Microbe Interact, vol.31, pp.2670-2681, 2010.

M. A. Torres, J. D. Jones, and J. L. Dangl, Reactive oxygen species signaling in response to pathogens, Plant Physiol, vol.141, pp.373-378, 2006.

G. Tremblay, R. Gagliardo, W. S. Chilton, D. , and P. , Diversity among opine-utilizing bacteria: identification of coryneform isolates, Appl. Environ. Microbiol, vol.53, pp.1519-1524, 1987.

J. Vacheron, G. Desbrosses, M. Bouffaud, B. Touraine, Y. Moënne-loccoz et al., Plant growth-promoting rhizobacteria and root system functioning, Annu. Rev. Phytopathol, vol.4, pp.427-450, 2013.
URL : https://hal.archives-ouvertes.fr/hal-02522224

J. Van-der-wolf, D. Boer, and S. H. , Phytopathogenic bacteria" in Principles of plant-microbe interactions: Microbes for Sustainable Agriculture, pp.65-77, 2015.

. Veena, H. Jiang, R. W. Doerge, and S. B. Gelvin, Transfer of T-DNA and Vir proteins to plant cells by Agrobacterium tumefaciens induces expression of host genes involved in mediating transformation and suppresses host defense gene expression, Plant J. Cell Mol. Biol, vol.35, pp.219-236, 2003.

E. H. Verbon, P. L. Trapet, I. A. Stringlis, S. Kruijs, P. A. Bakker et al., Iron and immunity, Annu. Rev. Phytopathol, vol.55, pp.355-375, 2017.

D. Veselov, M. Langhans, W. Hartung, R. Aloni, I. Feussner et al., Development of Agrobacterium tumefaciens C58-induced plant tumors and impact on host shoots are controlled by a cascade of jasmonic acid, auxin, cytokinin, ethylene and abscisic acid, Planta, vol.216, pp.512-522, 2003.

R. Wächter, M. Langhans, R. Aloni, S. Götz, A. Weilmünster et al., Vascularization, high-volume solution flow, and localized roles for enzymes of sucrose metabolism during tumorigenesis by Agrobacterium tumefaciens, Plant Physiol, vol.133, pp.1024-1037, 2003.

S. Wang, J. Yao, B. Zhou, J. Yang, M. T. Chaudry et al., Bacteriostatic effect of quercetin as an antibiotic alternative in vivo and its antibacterial mechanism in vitro, J. Food Prot, vol.81, pp.68-78, 2018.

Z. Wei, T. Yang, V. Friman, Y. Xu, Q. Shen et al., Trophic network architecture of root-associated bacterial communities determines pathogen invasion and plant health, Nat. Commun, vol.6, p.8413, 2015.

R. Weiner, S. Langille, and E. Quintero, Structure, function and immunochemistry of bacterial exopolysaccharides, J. Ind. Microbiol, vol.15, pp.339-346, 1995.

U. Wobus and H. Weber, Sugars as signal molecules in plant seed development, Biol. Chem, vol.380, pp.937-944, 1999.

D. W. Wood, J. C. Setubal, R. Kaul, D. E. Monks, J. P. Kitajima et al., The genome of the natural genetic engineer Agrobacterium tumefaciens C58, Science, vol.294, pp.2317-2323, 2001.

C. Wu, J. Lin, G. Shaw, and E. Lai, Acid-induced type VI secretion system is regulated by ExoR-ChvG/ChvI signaling cascade in Agrobacterium tumefaciens, PLoS Pathog, vol.8, p.1002938, 2012.

C. Wu, M. N. Santos, S. Cho, H. Chang, Y. Tsai et al., Plant-Pathogenic Agrobacterium tumefaciens strains have diverse type VI effector-immunity pairs and vary in In-Planta competitiveness, Mol. Plant. Microbe Interact, vol.35, pp.407-414, 2000.

Z. Yuan, M. P. Edlind, P. Liu, P. Saenkham, L. M. Banta et al., The plant signal salicylic acid shuts down expression of the vir regulon and activates quormone-quenching genes in Agrobacterium, Proc. Natl. Acad. Sci. U. S. A, vol.104, pp.11790-11795, 2007.

X. Zhang, L. Zhang, F. Dong, J. Gao, D. W. Galbraith et al., Hydrogen peroxide is involved in abscisic acid-induced stomatal closure in Vicia faba, Plant Physiol, vol.126, pp.1438-1448, 2001.

J. Zhao and A. N. Binns, Characterization of the mmsAB-araD1 (gguABC) genes of Agrobacterium tumefaciens, J. Bacteriol, vol.193, pp.6586-6596, 2011.

J. Zhao and A. N. Binns, GxySBA ABC transporter of Agrobacterium tumefaciens and its role in sugar utilization and vir gene expression, J. Bacteriol, vol.196, pp.3150-3159, 2014.

J. Zhao and A. N. Binns, Involvement of Agrobacterium tumefaciens galacturonate tripartite ATP-independent periplasmic (TRAP) transporter GaaPQM in virulence gene expression, Appl. Environ. Microbiol, vol.82, pp.1136-1146, 2016.

J. Zhu, P. M. Oger, B. Schrammeijer, P. J. Hooykaas, S. K. Farrand et al., The bases of crown gall tumorigenesis, J. Bacteriol, vol.182, pp.3885-3895, 2000.
URL : https://hal.archives-ouvertes.fr/hal-02123051