N. Alloisio, C. Queiroux, P. Fournier, P. Pujic, P. Normand et al., The Frankia alni symbiotic transcriptome, Molecular Plant-Microbe Interactions, vol.23, pp.593-607, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00599356

J. Arrighi, A. Barre, B. Ben-amor, A. Bersoult, L. C. Soriano et al., The Medicago truncatula lysin motif-receptor-like kinase gene family includes NFP and new nodule-expressed genes, Plant Physiology, vol.142, pp.265-279, 2006.

J. Becking, The Parasponia parviflora-Rhizobium symbiosis. Host specificity, growth and nitrogen fixation under various conditions, Plant and Soil, vol.75, pp.309-342, 1983.

A. Broghammer, L. Krusell, M. Blaise, J. Sauer, J. T. Sullivan et al., Legume receptors perceive the rhizobial lipochitin oligosaccharide signal molecules by direct binding, Proceedings of the National Academy of Sciences, vol.109, pp.13859-13864, 2012.
URL : https://hal.archives-ouvertes.fr/hal-02137625

Q. Cao, R. Op-den-camp, S. Kalhor, M. Bisseling, T. Geurts et al., Efficiency of Agrobacterium rhizogenes-mediated root transformation of Parasponia and Trema is temperature dependent, Plant Growth Regulation, vol.68, pp.459-465, 2012.

W. Capoen, D. Herder, J. Sun, J. Verplancke, C. et al., Calcium spiking patterns and the role of the calcium/calmodulin-dependent kinase CCaMK in lateral root base nodulation of Sesbania rostrata, Plant Cell, vol.21, pp.1526-1540, 2009.

L. Cardenas, J. A. Feijo, J. G. Kunkel, F. Sanchez, T. Holdaway-clarke et al., Rhizobium nod factors induce increases in intracellular free calcium and extracellular calcium influxes in bean root hairs, Plant Journal, vol.19, pp.347-352, 1999.

C. Er-emonie, H. Debell-e, F. Fernandez, and M. P. , Structural and functional comparison of Frankia root hair deforming factor and rhizobia Nod factor, Canadian Journal of Botany, vol.77, pp.1293-1301, 1999.

M. Chabaud, A. Genre, B. J. Sieberer, A. Faccio, J. Fournier et al., Arbuscular mycorrhizal hyphopodia and germinated spore exudates trigger Ca 2+ spiking in the legume and nonlegume root epidermis, New Phytologist, vol.189, pp.347-355, 2011.
URL : https://hal.archives-ouvertes.fr/hal-02651489

H. Chen, M. Batley, J. Redmond, and R. Bg, Alteration of the effective nodulation properties of a fast growing broad host range Rhizobium due to changes in exoploysaccharide synthesis, Journal of Plant Physiology, vol.120, pp.331-349, 1985.

S. De-mita, A. Streng, T. Bisseling, and R. Geurts, Evolution of a symbiotic receptor through gene duplications in the legume-rhizobium mutualism, New Phytologist, vol.201, pp.961-972, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01268605

D. Enari-e-j, P. Debell-e-f, and J. C. , Rhizobium lipo-chitooligosaccharide nodulation factors: signaling molecules mediating recognition and morphogenesis, Annual Review of Biochemistry, vol.65, pp.503-535, 1996.

D. W. Ehrhardt, R. Wais, and S. R. Long, Calcium spiking in plant root hairs responding to Rhizobium nodulation signals, Cell, vol.85, pp.673-681, 1996.

A. Genre, M. Chabaud, C. Balzergue, V. Puech-pag-es, M. Novero et al., Short-chain chitin oligomers from arbuscular mycorrhizal fungi trigger nuclear Ca 2+ spiking in Medicago truncatula roots and their production is enhanced by strigolactone, New Phytologist, vol.198, pp.190-202, 2013.
URL : https://hal.archives-ouvertes.fr/hal-02651472

R. Geurts, A. Lillo, and T. Bisseling, Exploiting an ancient signalling machinery to enjoy a nitrogen fixing symbiosis, Current Opinion in Plant Biology, vol.15, pp.438-443, 2012.

H. Gherbi, K. Markmann, S. Svistoonoff, J. Estevan, D. Autran et al., SymRK defines a common genetic basis for plant root endosymbioses with arbuscular mycorrhiza fungi, rhizobia, and Frankia bacteria, Proceedings of the National Academy of Sciences, vol.105, pp.4928-4932, 2008.

A. Gonz-alez-sama, M. M. Lucas, M. R. De-felipe, and J. J. Pueyo, An unusual infection mechanism and nodule morphogenesis in white lupin (Lupinus albus), New Phytologist, vol.163, pp.371-380, 2004.

J. M. Harris, R. Wais, and S. R. Long, Rhizobium-lnduced calcium spiking in Lotus japonicus, Molecular Plant-Microbe Interactions, vol.16, pp.335-341, 2003.

M. J. Harrison, Signaling in the arbuscular mycorrhizal symbiosis, Annual Review of Microbiology, vol.59, pp.19-42, 2005.

C. P. Humphreys, P. J. Franks, M. Rees, M. I. Bidartondo, J. R. Leake et al., Mutualistic mycorrhiza-like symbiosis in the most ancient group of land plants, Nature Communications, vol.1, p.103, 2010.

S. Kosuta, S. Hazledine, J. Sun, H. Miwa, R. J. Morris et al., Differential and chaotic calcium signatures in the symbiosis signaling pathway of legumes, Proceedings of the National Academy of Sciences, vol.105, pp.9823-9828, 2008.

K. Kucho, A. Hay, and N. P. , The determinants of the actinorhizal symbiosis, Microbes and Environments, vol.25, pp.241-252, 2010.
URL : https://hal.archives-ouvertes.fr/hal-02548046

E. B. Madsen, M. Antol-in-llovera, C. Grossmann, J. Ye, S. Vieweg et al., Autophosphorylation is essential for the in vivo function of the Lotus japonicus Nod factor receptor 1 and receptor-mediated signalling in cooperation with Nod factor receptor 5, Plant Journal, vol.65, pp.404-417, 2011.

E. B. Madsen, L. H. Madsen, S. Radutoiu, M. Olbryt, M. Rakwalska et al., A receptor kinase gene of the LysM type is involved in legume perception of rhizobial signals, Nature, vol.425, pp.637-640, 2003.

F. Maillet, V. Poinsot, . Andr-e-o, V. Puech-pag-es, A. Haouy et al., Fungal lipochitooligosaccharide symbiotic signals in arbuscular mycorrhiza, Nature, vol.469, pp.58-63, 2011.
URL : https://hal.archives-ouvertes.fr/hal-02649013

K. Markmann, G. Giczey, and M. Parniske, Functional adaptation of a plant receptor-kinase paved the way for the evolution of intracellular root symbioses with bacteria, PLoS Biology, vol.6, p.68, 2008.

K. Markmann and M. Parniske, Evolution of root endosymbiosis with bacteria: how novel are nodules?, Trends in Plant Science, vol.14, pp.77-86, 2009.

H. Miwa, J. Sun, G. Oldroyd, and J. A. Downie, Analysis of calcium spiking using a cameleon calcium sensor reveals that nodulation gene expression is regulated by calcium spike number and the developmental status of the cell, Plant Journal, vol.48, pp.883-894, 2006.

T. Naisbitt, E. K. James, and J. I. Sprent, The evolutionary significance of the legume genus Chamaecrista, as determined by nodule structure, New Phytologist, vol.122, pp.487-492, 1992.

P. Normand and M. Lalonde, Evaluation of Frankia strains isolated from provenances of two Alnus species, Canadian Journal of Microbiology, vol.28, pp.1133-1142, 1982.

P. Normand, P. Lapierre, L. S. Tisa, J. P. Gogarten, N. Alloisio et al., Genome characteristics of facultatively symbiotic Frankia sp. strains reflect host range and host plant biogeography, Genome Research, vol.17, pp.7-15, 2007.
URL : https://hal.archives-ouvertes.fr/halsde-00140365

G. Oldroyd, Speak, friend, and enter: signalling systems that promote beneficial symbiotic associations in plants, Nature Reviews Microbiology, vol.11, pp.252-263, 2013.

R. Op-den-camp, D. Mita, S. Lillo, A. Cao, Q. Limpens et al., A phylogenetic strategy based on a legume-specific whole genome duplication yields symbiotic cytokinin type-A response regulators, Plant Physiology, vol.157, pp.2013-2022, 2011.

R. Op-den-camp, A. Streng, S. De-mita, Q. Cao, E. Polone et al., LysM-type mycorrhizal receptor recruited for rhizobium symbiosis in the nonlegume Parasponia, Science, vol.331, pp.909-912, 2011.

K. Pawlowski, D. Bogusz, A. Ribeiro, and A. Berry, Progress on research on actinorhizal plants, Functional Plant Biology, vol.38, pp.633-638, 2011.

A. Pietraszewska-bogiel, B. Lefebvre, M. A. Koini, D. Klaus-heisen, F. Takken et al., Interaction of Medicago truncatula lysin motif receptor-like kinases, NFP and LYK3, produced in Nicotiana benthamiana induces defence-like responses, PLoS ONE, vol.8, p.65055, 2013.
URL : https://hal.archives-ouvertes.fr/hal-02645629

N. P. Price, B. Reli-c, F. Talmont, A. Lewin, S. G. Prom-e-d,-pueppke et al., Broad-host-range Rhizobium species strain NGR234 secretes a family of carbamoylated, and fucosylated, nodulation signals that are O-acetylated or sulphated, Molecular Microbiology, vol.6, pp.3575-3584, 1992.

S. G. Pueppke and W. J. Broughton, Rhizobium sp. strain NGR234 and R. fredii USDA257 share exceptionally broad, nested host ranges, Molecular Plant-Microbe Interactions, vol.12, pp.293-318, 1999.

D. Redecker, R. Kodner, and L. E. Graham, Glomalean fungi from the Ordovician, Science, vol.289, pp.1920-1921, 2000.

W. Remy, T. N. Taylor, H. Hass, and H. Kerp, Four hundred-million-year-old vesicular arbuscular mycorrhizae, Proceedings of the National Academy of Sciences, vol.91, pp.11841-11843, 1994.

M. Schultze, B. Quiclet-sire, E. Kondorosi, H. Virelizer, J. N. Glushka et al., Rhizobium meliloti produces a family of sulfated lipooligosaccharides exhibiting different degrees of plant host specificity, Proceedings of the National Academy of Sciences, vol.89, pp.192-196, 1992.

B. J. Sieberer, M. Chabaud, A. C. Timmers, A. Monin, J. Fournier et al., A nuclear-targeted cameleon demonstrates intranuclear Ca 2+ spiking in Medicago truncatula root hairs in response to rhizobial nodulation factors, Plant Physiology, vol.151, pp.1197-1206, 2009.

, Ó 2015 The Authors New Phytologist Ó, vol.207, pp.551-558, 2015.

S. R. Singer, S. L. Maki, A. D. Farmer, D. Ilut, G. D. May et al., Venturing beyond beans and peas: what can we learn from Chamaecrista?, Plant Physiology, vol.151, pp.1041-1047, 2009.

D. E. Soltis, P. S. Soltis, D. R. Morgan, S. M. Swensen, B. C. Mullin et al., Chloroplast gene sequence data suggest a single origin of the predisposition for symbiotic nitrogen fixation in angiosperms, Proceedings of the National Academy of Sciences, vol.92, pp.2647-2651, 1995.

J. I. Sprent, Legume nodulation: a global perspective, 2009.

G. S. Stacey, R. H. Burris, and H. J. Evans, Biological nitrogen fixation, 1992.

J. Sun, J. B. Miller, E. Granqvist, A. Wiley-kalil, E. Gobbato et al., Activation of symbiosis signaling by arbuscular mycorrhizal fungi in legumes and rice, Plant Cell, vol.27, pp.823-838, 2015.
URL : https://hal.archives-ouvertes.fr/hal-02119231

S. Svistoonoff, F. M. Benabdoun, M. Nambiar-veetil, L. Imanishi, V. Vaissayre et al., The independent acquisition of plant root nitrogen-fixing symbiosis in Fabids recruited the same genetic pathway for nodule organogenesis, PLoS ONE, vol.8, p.64515, 2013.
URL : https://hal.archives-ouvertes.fr/hal-02651288

M. J. Trinick, Symbiosis between Rhizobium and the non-legume, Trema aspera, Nature, vol.244, pp.459-460, 1973.

M. J. Trinick, Structure of nitrogen-fixing nodules formed by Rhizobium on roots of Parasponia andersonii Planch, Canadian Journal of Microbiology, vol.25, pp.565-578, 1979.

M. C. Vega-hernandez, R. Perez-galdona, F. B. Dazzo, A. Jarabo-lorenzo, M. C. Alfayate et al., Novel infection process in the indeterminate root nodule symbiosis between Chamaecytisus proliferus (tagasaste) and Bradyrhizobium sp, New Phytologist, vol.150, pp.707-721, 2001.

R. J. Wais, C. Galera, G. Oldroyd, R. Catoira, R. V. Penmetsa et al., Genetic analysis of calcium spiking responses in nodulation mutants of Medicago truncatula, Proceedings of the National Academy of Sciences, vol.97, pp.13407-13412, 2000.

S. A. Walker, V. Viprey, and A. J. Downie, Dissection of nodulation signaling using pea mutants defective for calcium spiking induced by Nod factors and chitin oligomers, Proceedings of the National Academy of Sciences, pp.13413-13418, 2000.

L. G. Wall, The actinorhizal symbiosis, Journal of Plant Growth Regulation, vol.19, pp.167-182, 2000.

G. D. Werner, W. K. Cornwell, J. I. Sprent, J. Kattge, and E. T. Kiers, A single evolutionary innovation drives the deep evolution of symbiotic N 2 -fixation in angiosperms, Nature Communications, vol.5, p.4087, 2014.

N. D. Young, . Debell-e-f, G. Oldroyd, R. Geurts, S. B. Cannon et al., The Medicago genome provides insight into the evolution of rhizobial symbioses, Nature, vol.480, pp.520-524, 2011.
URL : https://hal.archives-ouvertes.fr/hal-02652790